ALGEBRA PRELIMINARY EXAMINATION

JANUARY 2005

NOTES. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are the integers, the rational numbers, the real numbers, and the complex numbers respectively. All rings have identity unless specifically indicated otherwise.

- (1) Show that there is no simple group of order 132.
- (2) Let G be a (finite) nonabelian simple group and p a positive prime. Show that the intersection of all the Sylow p-subgroups of G is the identity.
- (3) For a group G suppose that $\chi: G \longrightarrow \mathbb{C}^*$ is a group homomorphism. Show that the map χ is constant on congugacy classes of G.
- (4) Show that if M is a simple R-module then the ring of R-endomorphisms of M is a division algebra containing R.
- (5) Show that if R is a commutative integral domain and $I \subsetneq R$ is a proper ideal of R then R/I is a projective R-module if and only if I is (0).
- (6) Show that an element is a unit of a commutative ring if and only if it is not contained in a proper ideal.
- (7) Consider the following matrix.

0	1	0
0	0	1
2	2	0

This matrix induces a $\mathbb{Q}[x]$ -module action on \mathbb{Q}^3 (via $f(x) \circ \mathbf{v} = f(T)\mathbf{v}$ where $f(x) \in \mathbb{Q}[x]$, $\mathbf{v} \in \mathbb{Q}^3$, and T is the matrix above). Explain why \mathbb{Q}^3 is an indecomposable (that is, cannot be decomposed as a direct sum of two proper submodules) $\mathbb{Q}[x]$ -module under this action.

- (8) Show that if \mathbb{F} is a field such that $\operatorname{Char}(\mathbb{F}) \neq 2$, then $\mathbb{F}[\sqrt{\alpha}, \sqrt{\beta}]$ has Galois group isomorphic to the non-cyclic group of order four if and only if α , β and $\alpha\beta$ are all not squares in \mathbb{F} (α and β are elements of \mathbb{F}).
- (9) Let R be commutative with identity and S a multiplicatively closed subset of R. Suppose that $I \subseteq R$ is an ideal such that $I \bigcap S = \emptyset$ and I is maximal with respect to this property. Prove that I is prime.
- (10) Let P be a finitely generated projective R-module. Show that $\operatorname{Hom}_R(P, R)$ is also a projective R-module.