Algebra Preliminary Examination May 2019

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- For this exam you have two options:
 - (i) Submit solutions to questions from part A and from part B.
 - (ii) Submit solutions to questions from part A and from part C.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi : R \to S$ is a ring homomorphism, then $\varphi(1_R) = 1_S$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

- 1. Let R be the polynomial ring $\mathbb{Q}[x, y]$ in two indeterminates x, y over the field \mathbb{Q} of rational numbers. Let I be the 2-generated ideal (x, y) in the ring R. **Prove or disprove**:
 - (a) I is a maximal ideal of the ring R.
 - (b) I can be principally generated as an ideal of the ring R.
- 2. Let R be the ring $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ of Gaussian integers. Prove that if I is any nonzero ideal of R, then R/I is a finite ring.
- 3. Let R be a ring and let M be an R-module. For submodules $L, K \leq M$ let $K \oplus L$ denote their *external* direct sum. Construct a short exact sequence

$$0 \to K \cap L \to K \oplus L \to K + L \to 0.$$

- 4. Let $R \subseteq S$ be an extension of rings and let P be a projective R-module. Prove that $S \otimes_R P$ is a projective S-module.
- 5. Let \mathbb{F} be a field and let V, W be finite dimensional \mathbb{F} -vector spaces. Fix any subspace $U \leq V$ and prove that the following statements are equivalent.
 - (i) There exists a linear transformation $T: V \to W$ such that $U = \ker T$.
 - (ii) $\dim(V) \le \dim(U) + \dim(W)$.
- 6. Let $T : \mathbb{Q}^7 \to \mathbb{Q}^7$ be a linear transformation with minimal polynomial $m_T(x) = (x^2 + 2)(x + 2)^3$. Find all possible rational canonical forms for T.

B. Groups, Fields, and Galois Theory (option 1)

- 1. Recall that S_n is the permutation group on the set $\{1, 2, ..., n\}$ and A_n is the subgroup consisting of all the even permutations. Prove that if $n \ge 5$ then A_n is the only proper nontrivial normal subgroup of S_n .
- 2. Let G be an infinite group with a nonidentity element $a \in G$ such that the conjugacy class $O(a) = \{gag^{-1} : g \in G\}$ is finite. Prove that G is not a simple group.
- 3. Let G be a group of order $160 = 2^55$. Prove that if G has two distinct groups of order 80, then G has a normal Sylow 5-subgroup.
- 4. Let $\omega \in \mathbb{C}$ be a primitive 7th root of unity and let $K = \mathbb{Q}(\omega)$.
 - (a) Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (b) How many intermediate fields lie between \mathbb{Q} and K? Justify your answer.

C. Homological Algebra (option 2)

- 1. Let R be an integral domain and Q its field of fractions. Let M be an R-module. Prove that $\operatorname{Tor}_{1}^{R}(Q/R, M) \cong T(M)$, the torsion submodule of M.
- 2. Let R be a noetherian ring, M a finitely generated R-module. Prove that M is a projective R-module if and only if $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for every prime ideal \mathfrak{p} of R.
- 3. If P is a finitely generated projective module over a ring R, show that $\operatorname{Hom}_R(P, R)$ is a projective R-module.
- 4. Let R = k[X,Y]/(XY) where k is a field and M = R/XR. Prove that $pd_R M = \infty$.