Algebra Preliminary Examination

May 2019
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- For this exam you have two options:
(i) Submit solutions to questions from part A and from part B.
(ii) Submit solutions to questions from part A and from part C.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Let R be the polynomial ring $\mathbb{Q}[x, y]$ in two indeterminates x, y over the field \mathbb{Q} of rational numbers. Let I be the 2 -generated ideal (x, y) in the ring R. Prove or disprove:
(a) I is a maximal ideal of the ring R.
(b) I can be principally generated as an ideal of the ring R.
2. Let R be the ring $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$ of Gaussian integers. Prove that if I is any nonzero ideal of R, then R / I is a finite ring.
3. Let R be a ring and let M be an R-module. For submodules $L, K \leq M$ let $K \oplus L$ denote their external direct sum. Construct a short exact sequence

$$
0 \rightarrow K \cap L \rightarrow K \oplus L \rightarrow K+L \rightarrow 0
$$

4. Let $R \subseteq S$ be an extension of rings and let P be a projective R-module. Prove that $S \otimes_{R} P$ is a projective S-module.
5. Let \mathbb{F} be a field and let V, W be finite dimensional \mathbb{F}-vector spaces. Fix any subspace $U \leq V$ and prove that the following statements are equivalent.
(i) There exists a linear transformation $T: V \rightarrow W$ such that $U=\operatorname{ker} T$.
(ii) $\operatorname{dim}(V) \leq \operatorname{dim}(U)+\operatorname{dim}(W)$.
6. Let $T: \mathbb{Q}^{7} \rightarrow \mathbb{Q}^{7}$ be a linear transformation with minimal polynomial $m_{T}(x)=$ $\left(x^{2}+2\right)(x+2)^{3}$. Find all possible rational canonical forms for T.

B. Groups, Fields, and Galois Theory (option 1)

1. Recall that S_{n} is the permutation group on the set $\{1,2, \ldots, n\}$ and A_{n} is the subgroup consisting of all the even permutations. Prove that if $n \geq 5$ then A_{n} is the only proper nontrivial normal subgroup of S_{n}.
2. Let G be an infinite group with a nonidentity element $a \in G$ such that the conjugacy class $O(a)=\left\{\mathrm{gag}^{-1}: g \in G\right\}$ is finite. Prove that G is not a simple group.
3. Let G be a group of order $160=2^{5} 5$. Prove that if G has two distinct groups of order 80, then G has a normal Sylow 5 -subgroup.
4. Let $\omega \in \mathbb{C}$ be a primitive $7^{\text {th }}$ root of unity and let $K=\mathbb{Q}(\omega)$.
(a) Determine the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
(b) How many intermediate fields lie between \mathbb{Q} and K ? Justify your answer.

C. Homological Algebra (option 2)

1. Let R be an integral domain and Q its field of fractions. Let M be an R-module. Prove that $\operatorname{Tor}_{1}^{R}(Q / R, M) \cong T(M)$, the torsion submodule of M.
2. Let R be a noetherian ring, M a finitely generated R-module. Prove that M is a projective R-module if and only if $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$-module for every prime ideal \mathfrak{p} of R.
3. If P is a finitely generated projective module over a ring R, show that $\operatorname{Hom}_{R}(P, R)$ is a projective R-module.
4. Let $R=k[X, Y] /(X Y)$ where k is a field and $M=R / X R$. Prove that $\operatorname{pd}_{R} M=\infty$.
