Algebra Preliminary Examination August 2019

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- For this exam you have two options:
 - (i) Submit solutions to questions from part A and from part B.
 - (ii) Submit solutions to questions from part A and from part C.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi : R \to S$ is a ring homomorphism, then $\varphi(1_R) = 1_S$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

- 1. Let R = C[0, 1] be the ring of continuous real-valued functions defined on the closed interval [0, 1]. **Prove or disprove** each statement.
 - (a) R is an integral domain.
 - (b) R is a Noetherian ring.
- 2. Let p be a prime element of the ring R and let R_p denote the localization at the prime ideal (p). Prove that if R is a UFD, then R_p is a PID.
- 3. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, C) = 0$ for all cyclic groups C.
- 4. Let R be a PID and let $a \in R$ be a nonzero nonunit element.
 - (a) Prove that R/(a) is not flat as an *R*-module.
 - (b) Let M be a finitely generated R-module. Prove that M is flat if and only if it is free.
- 5. Let M be an R-module and let $S \subseteq M$ be a linearly independent subset. Prove that S is contained in a maximal linearly independent subset of M.
- 6. Are the matrices $A, B \in \mathcal{M}_5(\mathbb{F}_5)$ displayed below similar? Here, \mathbb{F}_5 denotes the field of integers (mod 5).

	0	0	0	0	$1 \overline{0}$		[1]	1	0	0	0]
	1	0	0	0	0		0	1	1	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
A =	0	1	0	0	0	B =	0	0	1	1	0
	0	0	1	0	0		0	0	0	1	1
					0		0	0	0	0	1

B. Groups, Fields, and Galois Theory (option 1)

- 1. A subgroup H of a finite group G is called a Hall subgroup if gcd(|H|, [G : H]) = 1. Let N be a normal subgroup of G and let H be a Hall subgroup of G.
 - (a) Prove that $H \cap N$ is a Hall subgroup of N and HN/N is a Hall subgroup of G/N.
 - (b) Prove that if |N| = [G : H], then there exists a group homomorphism $\theta : H \to Aut(N)$ such that $G \simeq N \rtimes_{\theta} H$.
- 2. Classify all groups of p^2q^2 where p, q are distinct primes such that $p \nmid q^2 1$ and $q \nmid p^2 1$. **Hint:** Start by showing that G is the direct product of two Sylow subgroups.
- 3. Does there exist a polynomial $f \in \mathbb{Q}[x]$ for which $\mathbb{Q}(\sqrt[4]{2})$ is a splitting field (over \mathbb{Q})? Justify your answer.
- 4. Let ω be a primitive 7th root of unity. How many subfields lie between \mathbb{Q} and $\mathbb{Q}(\omega)$? Justify your answer.

C. Homological Algebra (option 2)

1. Let R be a commutative ring and $0 \to A \to Q \to C \to 0$ be a short exact sequence of *R*-modules where Q is injective. Assume that A is not injective. Prove that

$$\operatorname{id}_R A = \operatorname{id}_R C + 1.$$

- 2. Let R be a commutative ring and $0 \to A \to B \to C \to 0$ an exact sequence of finitely generated R-modules, and let I be an ideal of R contained in its Jacobson radical. Prove that depth_I $C \ge \min\{\text{depth}_I A - 1, \text{depth}_I B\}$.
- 3. Let A and B be two abelian groups with mA = nB = 0 for some relatively prime integers m and n. Prove that

$$\operatorname{Tor}_1^{\mathbb{Z}}(A, B) = 0.$$

4. Let I be a proper ideal in a commutative local ring R with maximal ideal \mathfrak{m} . Prove that there exists an isomorphism of R-modules

$$\operatorname{Tor}_{1}^{R}(R/I, R/\mathfrak{m}) \cong \frac{I}{I\mathfrak{m}}.$$