Instructions:
- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam “ring” means “ring with identity” and “module” means “unital (unitary) module”. If \(\varphi : R \to S \) is a ring homomorphism, we also assume \(\varphi(1_R) = 1_S \).

1. Let \(R \) be an integral domain. Prove that if every descending chain

\[(r_1) \supseteq (r_2) \supseteq (r_3) \supseteq \ldots\]

of principal ideals in \(R \) stabilizes, then \(R \) is a field.

2. Let \(R \) be an integral domain and let \(\pi \in R \) be an irreducible element that is not prime.

 (a) Prove that there exists an element \(r \in R \) such that the 2-generated ideal \((\pi, r) \) is not a principal ideal. **Hint:** There exist elements \(a, b \in R \) such that \(ab | \pi \) but \(\pi \nmid a \) and \(\pi \nmid b \).

 (b) Construct a 2-generated ideal in the ring \(\mathbb{Z}[\sqrt{-5}] \) that is not principal.

3. Suppose that \(g, h \in \mathbb{Q}[X] \). Use Gauss’s Lemma to prove that if \(f = gh \) belongs to \(\mathbb{Z}[X] \), then the product of any coefficient of \(g \) with any coefficient of \(h \) belongs to \(\mathbb{Z} \).

4. Let \(A, B \) be finite rings with at least two elements and let \(R = A \times B \). Hence, \(A \) is an \(R \)-module via the natural ring homomorphism \(R \to A \) projecting onto the first coordinate. Prove or disprove each statement:

 (a) \(A \) is a projective \(R \)-module.

 (b) \(A \) is a free \(R \)-module.

5. Let \(R \) be an integral domain with field of fractions \(K \) and let \(I \) be an ideal of \(R \). Prove that \((R/I) \otimes_R K = 0 \) if and only if \(I \neq 0 \).

6. Let \(F \) be a field and let \(U, V, W \) be finite dimensional \(F \)-vector spaces with linear transformations \(S: U \to V \) and \(T: V \to W \). Prove that

\[
\dim_F(\ker(T \circ S)) \leq \dim_F(\ker T) + \dim_F(\ker S)
\]

7. Let \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} \) be the field with two elements and let \(V \) be an \(\mathbb{F}_2 \)-vector space such that \(\dim(V) = 3 \). Find all possible rational canonical forms for a linear transformation \(T: V \to V \) satisfying \(T^6 = 1 \).