Instructions. Answer any 4 short questions, and any 4 long questions. Clearly mark which questions you wish to be graded on this sheet, or else 1-4 and 6-9 will be graded. Show all work, and explain your answers clearly. Answers will be graded on correctness and clarity. All solutions should include some explanation.

Shorter questions: (5 points each)

1. Let \(n \) denote an antichain poset with \(n \) elements. Write a formula for the number of linear extensions of the ordinal sum poset \(n \oplus m \oplus p \).

2. Is the pentagon poset \(a \preceq b \preceq c \preceq d, a \preceq e \preceq d \) a distributive lattice? Why or why not?

3. Given the following two semistandard Young tableaux, \(T = \begin{array}{ccc} \hline 1 & 3 & 3 \\ 2 & 4 \hline \end{array} \) and \(U = \begin{array}{c} 1 \\ 2 \end{array} \), find their product, \(T \ast U \), in the plactic monoid.

4. Compute the Schur symmetric function \(s_{2,2} \) in three variables \(x_1, x_2, x_3 \).

5. Write the basis element of the Specht module corresponding to the standard Young tableau \(\begin{array}{ccc} 1 & 2 & 3 \\ 4 \hline 5 \end{array} \). You do not need to simplify your answer.

Longer questions: (10 points each)

7. For which positive integers is there no connected poset \(P \) with exactly \(n \) chains? Justify your answer.

8. Let \(L(w, k) \) denote the largest sum of the lengths of \(k \) disjoint weakly increasing subsequences of \(w \). Prove the following statement: If \(w \) and \(w' \) are Knuth equivalent words, then \(L(w, k) = L(w', k) \).

Recall the elementary Knuth transformations are:

(a) \(yzx \sim yxz, x < y \leq z \)

(b) \(xzy \sim zxy, x \leq y < z \)

9. Let \(\Lambda_\mathbb{Q} \) denote the ring of homogeneous symmetric functions over \(\mathbb{Q} \). Let \(\omega : \Lambda_\mathbb{Q} \to \Lambda_\mathbb{Q} \) be defined by how it acts on the Schur function basis: \(\omega(s_\lambda) = s_{\lambda'} \), where \(\lambda' \) is the conjugate of the partition \(\lambda \).

(a) What is \(\omega^2 \)? Why?

(b) Define the hall inner product of symmetric functions by: \(\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \), where \(\delta_{\lambda,\mu} = 1 \) if \(\lambda = \mu \) and 0 otherwise. Show that \(\omega \) is an isometry, meaning for symmetric functions \(f, g \in \Lambda_\mathbb{Q}, \langle f, g \rangle = \langle \omega(f), \omega(g) \rangle \).

10. Find the table of characters for the irreducible representations of \(S_3 \). Give reasons for each character value; writing the table from memory without justifying your computations will receive no credit.