Algebra

EXAMINATION

August 2002

Notation. In the following examination p denotes a prime number. The ring of integers is denoted by \mathbb{Z} and the rationals by \mathbb{Q} . The letter R will denote a ring, the letter G will denote a group, and A_n will denote the alternating group. Given $f(x) \in R[x]$, we will denote the degree of f(x) by d(f(x)).

Problems

- (1) Prove that if H and K are finite subgroups of G and (|H|, |K|) = 1, then $H \cap K = \{1\}$.
- (2) Prove that if K is a characteristic subgroup of H and H is a normal subgroup of G, then K is a normal subgroup of G.
- (3) Prove that if H is a normal p-subgroup of a finite group then $H \leq P$ for all P Sylow p-subgroups of G.
- (4) Prove that A_n is the only proper normal subgroup of S_n for n > 4.
- (5) Prove that if |G| = 300, then G is not a simple group.
- (6) Let F be a field, and $g(x), f(x) \in F[x]$. Prove that if $d(f(x)) \leq d(g(x)) = n$ and if g(a) = f(a) for n + 1 distinct elements $a \in F$, then f(x) = g(x).
- (7) Show that $g(x) = x^5 4x^2 + 2$ is irreducible in $\mathbb{Q}[x]$
- (8) Prove that $Z_3[x]/(x^3 x^2 1)$ and $Z_3[x]/(x^3 x^2 + x 1)$ are isomorphic.
- (9) Let K be a field and R the subring of K[x] consisting of all polynomials having no linear term, prove that R is a domain containing a pair of elements with no gcd.
- (10) Prove that the additive group of \mathbb{Q} is not a direct sum of proper subgroups (hint: If $a, b \in \mathbb{Q}$ then there exist $c \in \mathbb{Q}$ such that $a, b \in \langle c \rangle$).