# Algebra <br> EXAMINATION 

January 2003

Notation. In the following examination $p$ denotes a prime number. The ring of integers is denoted by $\mathbb{Z}$ and the rationals by $\mathbb{Q}$. The letter $R$ will denote a ring, the letter $G$ will denote a group, and $A_{n}$ will denote the alternating group. Given $f(x) \in R[x]$, we will denote the degree of $f(x)$ by $d(f(x))$.

## Problems

(1) Prove that if $K$ is a normal subgroup of $G$ and $(|K|,[G: K])=1$, then $K$ is the unique subgroup of $G$ having order $|K|$.
(2) Prove that if $G$ is a finite $p$-subgroup of order $p^{n}$, then $G$ has a normal subgroup of order $p^{k}$ for any $k \leq n$.
(3) Prove that if $H$ is a simple group and $H \leq S_{n}$ and $|H|>2$, then $H$ is a subgroup of $A_{n}$.
(4) Prove that if $|G|=96$, then $G$ is not a simple group.
(5) Prove that every Euclidean ring is a PID.
(6) Prove that if $G F\left(p^{n}\right)$ is a subfield of $G F\left(p^{m}\right)$, then $n \mid m$. (Where $G F\left(p^{n}\right)$ is the Galois field of $p^{n}$ elements).
(7) Prove that if $R$ is a Euclidean ring and $b \in R$ is neither zero nor a unit, then for any $n \geq 0 d\left(b^{n}\right)<d\left(b^{n+1}\right)$.(Where $d: R \mapsto \mathbb{N} \cup\{0\}$ is the Euclidean function, and you may assume that $d(x y) \geq d(x)$ for nonzero $x, y \in R)$.
(8) Let $R$ be a commutative ring with $1 \neq 0$. Suppose that $0 \longrightarrow N \longrightarrow$ $M \longrightarrow(M / N) \longrightarrow 0$ is an exact sequence of $R$-modules, show that $M$ is a Noetherian $R$-module if and only if $N$ and $M / N$ are Noetherian $R$-modules.
(9) Show that the polynomial $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$. (Hint: Consider the transformation $x \longrightarrow x+1$ ).
(10) Given that $x^{3}+2 x+1$ is irreducible in $Z_{3}[x]$, find $(2 x+1)^{-1} \in \frac{Z_{3}[x]}{\left(x^{3}+2 x+1\right)}$.

