# ALGEBRA PRELIMINARY EXAMINATION 

JANUARY 2004

Notes. $\mathbb{Z}$ and $\mathbb{Q}$ are the integers and the rational numbers respectively. All rings are commutative with identity unless specifically indicated otherwise.
(1) Prove that if $n$ and $m$ are relatively prime integers and $G$ is an abelian group of order $n m$, then $G$ can be decomposed into a direct product of a group of order $n$ and a group of order $m$.
(2) Show that there is no simple group of order 132.
(3) Show that $A_{6}$ has no subgroup of order 90.
(4) Show that the group of units in an imaginary quadratic field is finite. (This terminology means the ring

$$
R=\left\{\begin{array}{l}
\mathbb{Z}[\sqrt{d}], \text { if } d \equiv 2,3 \bmod (4) \\
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], \text { if } d \equiv 1 \bmod (4)
\end{array}\right.
$$

where $d<0$.) Note: for this problem we will be happy if you show the unit group is finite for only one of the above cases (pick your favorite one).
(5) Let $R$ be a Noetherian ring and $T$ an extension of $R$ that is finitely generated over $R$ as a ring. Show that $T$ is Noetherian.
(6) A ring $R$ (commutative with identity) is said to be zero-dimensional if every prime ideal is maximal. Show that any zero-dimensional domain is a field and that any finite commutative ring with identity is zero-dimensional.
(7) Recall that an $R$-module, $P$ is said to be projective if given an $R$-module epimorphism $f: A \longrightarrow B$ and an $R$-module homomorphism $\phi: P \longrightarrow B$ then there is an $R$-module homomorphism $\bar{\phi}: P \longrightarrow A$ such that $f \cdot \bar{\phi}=\phi$.


Show that $P$ is projective if and only if every short exact sequence of the form $0 \longrightarrow A \longrightarrow B \longrightarrow P \longrightarrow 0$ is split exact.
(8) Show that, as a polynomial over $\mathbb{Q}[x, y], f(x, y)=x^{4}+3 y+x^{3} y^{2}+2 x y^{2}$ is irreducible.
(9) Let $R$ be a commutative ring with identity of characteristic 0 . Suppose that $I \subseteq R$ is an ideal that is maximal with respect to the property that $R / I$ is of characteristic 0 . Show that $I$ is prime.
(10) Find all irreducible polynomials of degree 3 over $\mathbb{Z}_{2}$. Compute the Galois groups over $\mathbb{Z}_{2}: \operatorname{Gal}\left(\mathbb{Z}_{2}[x] /(f(x)), \mathbb{Z}_{2}\right)$ where $f(x)$ are the degree 3 irreducible polynomials over $\mathbb{Z}_{2}$.

