ALGEBRA PRELIMINARY EXAMINATION

MAY 2004

Notes. \mathbb{Z} and \mathbb{Q} are the integers and the rational numbers respectively. All rings are commutative with identity unless specifically indicated otherwise.
(1) Let G be a simple group and A a nonidentity abelian group. If $\phi: G \longrightarrow A$ is a surjection, then show that G is cyclic of prime order.
(2) Let G be a group of order $p m$ where p is a prime number $p>m$. Show that G cannot be simple.
(3) Show that any finite group generated by two elements of order 2 is dihedral (here we will consider the group $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ to be dihedral).
(4) Show that an arbitrary intersection of prime ideals is a radical ideal.
(5) Recall that a ring is called Artinian if it satisfies the descending chain condition on ideals (any chain of ideals $I_{1} \supseteq I_{2} \supseteq I_{3} \cdots$ stabilizes). Show that any Artinian domain is a field.
(6) Let G be a finite group and K a field such that $(\operatorname{char}(K),|G|)=1$. The group algebra $K[G]$ is defined to be the set of formal sums $\sum_{i=1}^{m} k_{i} g_{i}$ with $k_{i} \in K$ and $g_{i} \in G$ (with $\sum_{i=1}^{m} k_{i} g_{i}+\sum_{i=1}^{m} t_{i} g_{i}=\sum_{i=1}^{m}\left(k_{i}+t_{i}\right) g_{i}$ and $\left(k_{1} g_{1}\right)\left(k_{2} g_{2}\right)=k_{1} k_{2}\left(g_{1} g_{2}\right)$ and extend by using distributivity). Show that in $K[G]$ the element

$$
\frac{1}{n} \sum_{g \in G} g
$$

where $n=|G|$, is idempotent.
(7) Show that the polynomial $x^{4}-2 x^{2}+2$ is irreducible over \mathbb{Q} and compute its Galois group (over \mathbb{Q}). Hint: optionally, you could recall the transitive subgroups of S_{4} to eliminate a number of possibilities.
(8) Suppose R is commutative with identity, $I \subseteq R$ is an ideal, and M is an R-module. Show that there is an R-module isomorphism

$$
R / I \otimes_{R} M \cong M / I M
$$

(9) Show that the R-module P is projective if and only if given any surjective homomorphism $\phi: B \longrightarrow C$, the induced homomorphism $\bar{\phi}$: $\operatorname{Hom}_{R}(P, B) \longrightarrow \operatorname{Hom}_{R}(P, C)$ is surjective.
(10) Give two examples, in characteristic 2, of fields as follows. First give an example of an extension of fields that is not seperable and then give an example of a quadratic extension of fields that is separable.

