Algebra Preliminary Examination

September 2008
Instructions: Begin each question on a new sheet of paper.
In this exam, all rings have identity and all modules are unital.

1. For each finite abelian group G and each integer $n \geqslant 0$, let $f_{G}(n)$ denote the number of elements in G of order n. For finite abelian groups G and H, prove that $G \cong H$ if and only if $f_{G}=f_{H}$.
2. Let p be a prime number and let G be a finite p-group. For each positive integer d such that $d||G|$, prove that G has a normal subgroup H such that $|H|=d$.
3. Let R be a commutative ring with identity. Let I and J be ideals of R such that $I+J=R$. Prove that $I \cap J=I J$ and that $R / I J \cong R / I \times R / J$.
4. Recall that the Jacobson radical of a commutative ring is the intersection of its maximal ideals. Let n be an integer such that $n \geqslant 2$. Compute the Jacobson radical of $\mathbb{Z} /(n)$.
5. (a) Define the terms "Euclidean domain" and "principal ideal domain".
(b) Prove that every Euclidean domain is a principal ideal domain.
6. Let $K \subseteq L$ be an extension of finite fields. Prove that this extension is Galois and has cyclic Galois group.
7. Let K be a field and let K^{\times}denote the multiplicative group of nonzero elements of K. Prove that every finite subgroup of K is cyclic.
8. Let R be a ring and consider an exact sequence of R-modules

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 .
$$

(a) Prove that, if N is projective, then M is projective if and only if L is projective.
(b) Provide an example where L and M are projective but N is not projective. Justify your response.
9. Let R be a ring with identity and let M be an R-module. Recall that an R-module $N \neq 0$ is simple if its only submodules of N are 0 and N.
(a) Prove that, if M is simple, then $\operatorname{Hom}_{R}(M, M)$ is a division ring.
(b) Find an example where $\operatorname{Hom}_{R}(M, M)$ is not a division ring. Justify your response.
10. Let R be a ring and consider the following commutative diagram of left R-module homomorphisms with exact rows

Prove that there is an exact sequence

$$
0 \rightarrow \operatorname{Ker}\left(h_{1}\right) \rightarrow \operatorname{Ker}\left(h_{2}\right) \rightarrow \operatorname{Ker}\left(h_{3}\right) .
$$

