Algebra Preliminary Examination

August 2016
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity $1 \neq 0$ " and "module" means "unital module".
- This exam has two pages.

1. Let R be a Principal Ideal Domain (P.I.D.) and let S be a ring with identity. Let $f: R \rightarrow S$ be a surjective ring homomorphism.
(a) Prove that every ideal in S is principal.
(b) Give an example which demonstrates that S need not be a P.I.D.
2. Let R be a commutative ring and let I and J be ideals of R.
(a) Prove that every element of $R / I \otimes_{R} R / J$ can be written as a simple tensor of the form $(1 \bmod I) \otimes_{R}(r \bmod J)$.
(b) Prove that there is an R-module isomorphism $R / I \otimes_{R} R / J \cong R /(I+J)$ mapping $(r \bmod I) \otimes_{R}\left(r^{\prime} \bmod J\right)$ to $r r^{\prime} \bmod (I+J)$.
3. Let R be a commutative ring and S be a multiplicatively closed subset of R. Prove that the prime ideals of $S^{-1} R$ are in one-to-one correspondence ($\wp \leftrightarrow S^{-1} \wp$) with the prime ideals of R which do not intersect with S.
4. Determine if the matrices

$$
A=\left[\begin{array}{ccc}
2 & -2 & 14 \\
0 & 3 & -7 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
2 & 2 & 1 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

have the same rational canonical form over \mathbb{Q}.
5. Let R be an integral domain. Recall that an R-module N is called torsion free if $\operatorname{Tor}(N)=$ 0 where

$$
\operatorname{Tor}(N):=\{x \in N \mid r x=0 \text { for some non-zero } r \in R\} .
$$

Prove that if M is a projective R-module then M is torsion free.
6. Let V and W be vector spaces over the field F and let $T: V \rightarrow W$ be a linear transformation. Assume that V is finite-dimensional. Prove that

$$
\operatorname{dim}_{F} V=\operatorname{dim}_{F} \operatorname{ker}(T)+\operatorname{dim}_{F} T(V)
$$

where $\operatorname{ker}(T)$ denotes the kernel of T.
7. Let G be the additive abelian group $\mathbb{Z} \oplus \mathbb{Z}$. Recall that $\langle(a, b)\rangle=\{n(a, b) \in G: n \in \mathbb{Z}\}$ is the cyclic subgroup of G generated by the ordered pair (a, b).
(a) Prove that the quotient group $G /\langle(1,1)\rangle$ is an infinite cyclic group.
(b) Is the quotient group $G /\langle(2,2)\rangle$ cyclic? Justify your answer.
8. Classify all groups of order 45.
9. Let K be the splitting field of the polynomial $x^{11}-3$ over \mathbb{Q}. Find the dimension $[K: \mathbb{Q}]$ of the \mathbb{Q}-vector space K. Justify your answer.
10. Consider the irreducible polynomial $f(x)=x^{5}-2 x^{3}-8 x-2$ shown below. Prove that there exists no radical formula for finding the five complex roots of f.

