Algebra Preliminary Examination February 2009

Instructions: Begin each question on a new sheet of paper. Justify each of your answers. In this exam, each ring has identity and each module is unital.

- 1. Up to isomorphism, describe all abelian groups of order 2000.
- 2. Let G be a group. For each $g \in G$ define the map $\phi_g \colon G \to G$ by the formula $\phi_g(h) = g^{-1}hg$. Let $\operatorname{Aut}(G)$ denote the set of all automorphisms of G, which is a group under composition. Prove the following:
 - (a) For each $g \in G$, the map ϕ_g is an automorphism of G. Such a map is called an *inner automorphism* of G.
 - (b) The map $\Phi: G \to \operatorname{Aut}(G)$ given by $\Phi(g) = \phi_g$ is a homomorphism.
- 3. Give an example of a field extension that is not separable. Give an example of a field extension that is not normal.
- 4. Let $K \subseteq L$ be a finite field extension, and consider a polynomial $f \in K[X]$ such that $\deg(f)$ and [L: K] are relatively prime. Prove that, if f is irreducible over K, then f is irreducible over L. Show that the hypothesis " $\deg(f)$ and [L: K] are relatively prime" is necessary.
- 5. Consider the polynomial $f = X^4 + 10X + 5 \in \mathbb{Z}[X]$. Prove that the quotient $K = \mathbb{Q}[X]/(f)$ is a field extension of \mathbb{Q} and compute $[K:\mathbb{Q}]$. Is the ring $\mathbb{Z}[X]/(f)$ a field?
- 6. Let R be a ring, and set $Z(R) = \{r \in R \mid rs = sr \text{ for all } s \in R\}$. Prove that Z(R) is a subring of R. Must Z(R) be a left ideal of R?
- 7. Let R be a commutative ring and let M be a noetherian R-module. Set $\operatorname{Ann}_R(M) = \{r \in R \mid rM = 0\}$ and prove that $R/\operatorname{Ann}_R(M)$ is a noetherian ring.
- 8. Let R be a commutative ring, let $I \subseteq R$ be an ideal, and let M be an R-module. For each element $m \in M$, set $\operatorname{Ann}_R(m) = \{r \in R \mid rm = 0\}$. Prove the following:
 - (a) For each element $m \in M$, the set $\operatorname{Ann}_R(m) \subseteq R$ is an ideal.
 - (b) There is an element $m \in M$ such that $I = \operatorname{Ann}_R(m)$ if and only if there is an *R*-module monomorphism $R/I \to M$.
- 9. Let R be a commutative ring and let M be an R-module. Prove that M is a finitely generated projective R-module if and only if there is an R-module Q and an integer $n \ge 0$ such that $P \oplus Q \cong \mathbb{R}^n$.
- 10. Let R be a ring and consider the following diagram of left R-module homomorphisms wherein τ and π are the canonical epimorphisms:

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & M' & \stackrel{\tau}{\longrightarrow} & M'/\operatorname{Im}(f) \\ g & & & & | \\ g' & & & | \\ g' & & & | \\ M & \stackrel{h}{\longrightarrow} & N' & \stackrel{\pi}{\longrightarrow} & N'/\operatorname{Im}(h). \end{array}$$

Assume that the left-hand square commutes, and prove that there is a left *R*-module homomorphism $g'': M'/\operatorname{Im}(f) \to N'/\operatorname{Im}(h)$ making the right-hand square commute.