PH.D. PRELIMINARY EXAMINATION IN ALGEBRA

AUGUST 1995

Notation. In the following examination R denotes a ring. The integers are denoted by \mathbb{Z} , and the rational numbers are denoted by \mathbb{Q} .

Problems.

- (1) Show that every group of order 15 is Abelian.
- (2) Let G be a finite non-cyclic Abelian group. Show that for some p, the p-Sylow subgroup of G is non-cyclic.
- (3) Let G be a group, let K be a normal subgroup of G and let H be a subgroup of K. Denote by $N_G(H) = \{a \in G \mid aHa^{-1} = H\}$, the normalizer of H in G. If for every $g \in G$, there exists $k \in K$ with $gHg^{-1} = kHk^{-1}$, then $G = KN_G(H)$.
- (4) Show that no group of order 96 is simple.
- (5) Let R be a commutative Noetherian ring. Show that R[x] is a Noetherian ring.
- (6) Let $\phi: M \to N$ be an epimorphism of *R*-modules, let *P* be a projective *R*-module and let $\overline{\phi}: Hom_R(P, M) \to Hom_R(P, N)$

be the map given by $\overline{\phi}: g \mapsto \phi \circ g$. Show that $\overline{\phi}$ is an epimorphism of Abelian groups.

- (7) Let R be a finite semisimple commutative ring. Show that R is a direct sum of fields.
- (8) Suppose that k/\mathbb{Q} is a Galois extension and K/k is a Galois extension, show that K/\mathbb{Q} need not be a Galois extension.
- (9) What is the Galois group of $x^3 2$ over \mathbb{Q} ?
- (10) Show that the ring of endomorphisms of a simple R-module is a division ring.