Algebra Preliminary Examination

August 2009

Directions: Begin each question on a new sheet of paper. All rings are commutative with identity and all modules are unital.

1. Suppose that R is a PID and that P is any prime ideal of R. Prove that the localization R_{P} is also a PID .
2. Let $\phi: G \longrightarrow H$ be a group epimorphism and let K be a normal subgroup of G.
(a) Prove that $\phi(K)$ is a normal subgroup of H.
(b) Prove that ϕ induces a group homomorphism $\bar{\phi}: G / K \longrightarrow H / \phi(K)$ that is also surjective.
(c) Prove that $\bar{\phi}$ is an isomorphism if and only if $\operatorname{ker} \phi \subset K$.
3. Let p be a prime integer and let ζ_{p} be a primitive $p^{\text {th }}$ root of unity. Prove that the splitting field of the polynomial $x^{p}-2 \in \mathbb{Q}[x]$ is $\mathbb{Q}\left(\sqrt[p]{2}, \zeta_{p}\right)$. What is $\left[\mathbb{Q}\left(\sqrt[p]{2}, \zeta_{p}\right): \mathbb{Q}\right]$?
4. Let A, B be finite groups and let p be a prime. Prove that each Sylow p-subgroup of $A \times B$ is of the form $P \times Q$ where $P \in \operatorname{Syl}_{p}(A)$ and $Q \in \operatorname{Syl}_{p}(B)$.
5. Let G be a finite group of order n and let $\theta: G \longrightarrow S_{n}$ be the permutation representation afforded by the action of left-multiplication in G. If $n=r s$ and if $g \in G$ is an element of order r, prove that $\theta(g)=\sigma_{1} \sigma_{2} \cdots \sigma_{s}$ where each σ_{i} is an r-cycle.
6. Let G be a nonzero finite abelian group viewed as a \mathbb{Z}-module via the usual scalar multiplication. Prove that G does not have the structure of a \mathbb{Q}-module.
7. Prove that the polynomial $x^{2} y^{2}+x^{2} y+y^{2}+x+1$ is irreducible in $\mathbb{Q}[x, y]$.
8. Write down all possible Galois groups for a cubic polynomial in $\mathbb{Q}[x]$. Find the Galois groups of $x^{3}+2 x-4$ and $x^{3}-3 x+1$ over \mathbb{Q}. (Hint: If $f(x)=x^{3}+p x+q$ then $\Delta=-4 p^{3}-27 q^{2}$ and $\operatorname{disc}(f)=\Delta^{2}$.)
9. Prove that $2 \otimes[1]=0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$. Prove that $2 \otimes[1] \neq 0$ in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.
10. Let $F(A)$ be the free R-module on the set A and let $F(B)$ be the free R-module on the set B. In addition, let $|X|$ denote the cardinality of any set X.
(a) Prove that if $|A|=|B|$, then $F(A) \simeq F(B)$.
(b) Prove that if $|A|$ and $|B|$ are finite, then $F(A) \simeq F(B)$ if and only if $|A|=|B|$.
