Algebra Preliminary Examination February 2014

Directions: Show all work for full credit. Unless otherwise stated, R denotes a commutative ring with identity and all R-modules are unital. Good luck and just do the best you can.

- 1. Let S_n be the symmetric group of permutations on n letters and let A_n be the subgroup of even permutations. Prove that A_n is the only subgroup of S_n with index 2.
- 2. Let G be a group of order 105. Prove that G contains a normal Sylow 5-subgroup and a normal Sylow 7-subgroup.
- 3. Let I be a proper ideal of the ring R and let S = 1 + I. Prove that S is a multiplicatively closed subset of R and that $S^{-1}I$ is contained in the Jacobson radical of $S^{-1}R$.
- 4. Suppose that R is an integral domain. Prove that R is a PID if it satisfies the following two conditions:
 - (i) Every pair of nonzero elements $r, s \in R$ has a greatest common divisor d which can be written in the form d = rx + sy for some $x, y \in R$.
 - (ii) If $(a_1) \subseteq (a_2) \subseteq (a_3) \subseteq \dots$ is a chain of nonzero principal ideals, then there exists a positive integer N such that $(a_n) = (a_N)$ for all $n \ge N$.
- 5. Suppose that P and Q are projective R-modules. Prove that $P \otimes_R Q$ is a projective R-module.
- 6. Let M be a Noetherian R-module and let $\varphi : M \to M$ be an endomorphism of M. Prove that $\ker(\varphi^N) \cap \operatorname{Im}(\varphi^N) = 0$ for some positive integer N.
- 7. Suppose that V, W are finite dimensional vector spaces over the field F and let U be a subspace of V. Prove that there exists a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ such that ker $\alpha = U$ if and only if $\dim(U) \ge \dim(V) \dim(W)$.
- 8. Let \mathbb{F}_2 denote the field with two elements and let V be an \mathbb{F}_2 -vector space such that $\dim_{\mathbb{F}_2}(V) = 3$. How many possible rational canonical forms are there for a linear transformation $\theta \in \operatorname{Hom}(V, V)$ satisfying $\theta^6 = 1_V$? Justify your answer.
- 9. Find the minimum polynomial of the complex number $\sqrt{3+4i} + \sqrt{3-4i}$ over the field \mathbb{Q} of rational numbers. Justify your answer.
- 10. Let F be a field of characteristic zero containing a primitive n^{th} root of unity and let $a \in F$. Prove that if K is the splitting field of the polynomial $p(x) = x^n a$, then the Galois group Gal(K/F) is cyclic.