Algebra Preliminary Examination February 2014

Directions: Show all work for full credit. Unless otherwise stated, R denotes a commutative ring with identity and all R-modules are unital. Good luck and just do the best you can.

1. Let S_{n} be the symmetric group of permutations on n letters and let A_{n} be the subgroup of even permutations. Prove that A_{n} is the only subgroup of S_{n} with index 2.
2. Let G be a group of order 105. Prove that G contains a normal Sylow 5 -subgroup and a normal Sylow 7 -subgroup.
3. Let I be a proper ideal of the ring R and let $S=1+I$. Prove that S is a multiplicatively closed subset of R and that $S^{-1} I$ is contained in the Jacobson radical of $S^{-1} R$.
4. Suppose that R is an integral domain. Prove that R is a PID if it satisfies the following two conditions:
(i) Every pair of nonzero elements $r, s \in R$ has a greatest common divisor d which can be written in the form $d=r x+s y$ for some $x, y \in R$.
(ii) If $\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq\left(a_{3}\right) \subseteq \ldots$ is a chain of nonzero principal ideals, then there exists a positive integer N such that $\left(a_{n}\right)=\left(a_{N}\right)$ for all $n \geq N$.
5. Suppose that P and Q are projective R-modules. Prove that $P \otimes_{R} Q$ is a projective R-module.
6. Let M be a Noetherian R-module and let $\varphi: M \rightarrow M$ be an endomorphism of M. Prove that $\operatorname{ker}\left(\varphi^{N}\right) \cap \operatorname{Im}\left(\varphi^{N}\right)=0$ for some positive integer N.
7. Suppose that V, W are finite dimensional vector spaces over the field F and let U be a subspace of V. Prove that there exists a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ such that $\operatorname{ker} \alpha=U$ if and only if $\operatorname{dim}(U) \geq \operatorname{dim}(V)-$ $\operatorname{dim}(W)$.
8. Let \mathbb{F}_{2} denote the field with two elements and let V be an \mathbb{F}_{2}-vector space such that $\operatorname{dim}_{\mathbb{F}_{2}}(V)=3$. How many possible rational canonical forms are there for a linear transformation $\theta \in \operatorname{Hom}(V, V)$ satisfying $\theta^{6}=1_{V}$? Justify your answer.
9. Find the minimum polynomial of the complex number $\sqrt{3+4 i}+\sqrt{3-4 i}$ over the field \mathbb{Q} of rational numbers. Justify your answer.
10. Let F be a field of characteristic zero containing a primitive $n^{\text {th }}$ root of unity and let $a \in F$. Prove that if K is the splitting field of the polynomial $p(x)=x^{n}-a$, then the Galois group $\operatorname{Gal}(K / F)$ is cyclic.
