In this exam, the term "ring" is short for "commutative ring with identity" and "module" means "unital module". The order of a group G is denoted $|G|$. Let R be a ring.
Full credit will only be given for solutions that are completely justified.

1. Let $f: A \rightarrow B$ be a homomorphism between finite abelian groups. Assume that $|A|$ and $|B|$ are relatively prime, and prove that $f=0$.
2. Let G be a group with operation written multiplicatively. Recall that a composition series of length n for G is a chain of subgroups $\{1\}=G_{0} \subset G_{1} \subset \cdots \subset G_{n-1} \subset G_{n}=G$ such that for $i=1, \ldots, n$ the subgroup G_{i-1} is normal in G_{i} such that the quotient G_{i} / G_{i-1} is simple. Let p be a prime number, and assume that G is a p-group such that $|G|=p^{m}$. Prove that G has a composition series of length m.
3. Let C, D, and E be $n \times n$ matrices over \mathbb{C} such that E is invertible and $C=E D E^{-1}$. Prove that \mathbb{C}^{n} has a basis consisting of eigenvectors for C if and only if \mathbb{C}^{n} has a basis consisting of eigenvectors for D.
4. Let $K \subseteq L$ be a finite field extension.
(a) Prove that if $[L: K]=2$, then the extension $K \subseteq L$ is normal.
(b) Prove or give a counterexample: if $[L: K]$ is prime, then the extension $K \subseteq L$ is normal.
5. Give an example of a non-separable finite field extension.
6. Prove that every euclidean domain is a principal ideal domain.
7. Prove or give a counterexample: If R is a principal ideal domain, then so is the polynomial ring $R[X]$.
8. Let M be an R-module and fix a submodule $N \subseteq M$. Define ($N: M$) :=\{r|R|rM؟N\}. Prove that $(N: M)$ is an ideal of R.
9. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of R-modules and R-module homomorphisms, and let $P \subset R$ be a prime ideal of R.
(a) Prove that $M=0$ if and only if $L=0=N$.
(b) Prove that the localization $M_{P}=0$ if and only if $L_{P}=0=N_{P}$.
10. Let M be an R-module, and set $\operatorname{Ann}_{R}(M)=(0: M)=\{r \in R \mid r M=0\}$. (See Question 8.) For each $r \in R$, let $\mu_{r}: M \rightarrow M$ be given by multiplication by r, that is, $\mu_{r}(m):=r m$.
(a) Prove that μ_{r} is an R-module homomorphism for each $r \in R$.
(b) Prove that the map $\chi: R \rightarrow \operatorname{Hom}_{R}(M, M)$ given by $\chi(r)=\mu_{r}$ is an R-module homomorphism.
(c) Prove that $\operatorname{Ker}(\chi)=\operatorname{Ann}_{R}(M)$.
