Algebra Preliminary Examination

January 2010

Directions: Begin each question on a new sheet of paper. All rings are commutative with identity and all modules are unital.

1. Let R be a PID and let I be any proper nonzero ideal of R.
(a) Prove that $I=P_{1} P_{2} \cdots P_{n}$ where $n \in \mathbb{Z}^{+}$and each P_{i} is a prime ideal.
(b) Prove that if $I=Q_{1} Q_{2} \cdots Q_{m}$, is any other prime ideal factorization of I, then $m=n$ and, after a suitable renumbering, $P_{i}=Q_{i}$ for each $i \leq n$.
2. Let G be a group with $N \triangleleft G,[G: N]$ finite, $H<G,|H|$ finite, and $\operatorname{gcd}([G: N],|H|)=1$. Prove that $H<N$.
3. Suppose that R is a subring of a field K and that R contains a field F. Prove that if K / F is a finite field extension, then R is a field.
4. Let G be a group with $|G|=231$. Show that $Z(G)$ contains a Sylow 11-subgroup of G and that G contains a normal Sylow 7 -subgroup.
5. Let G be an infinite group. Prove that G is cyclic if and only if G is isomorphic to each of its proper subgroups.
6. Let D be an infinite integral domain. Prove that if D has a finite number of maximal ideals, then D must have an infinite number of units.
7. How many ideals are in the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$? Justify your answer.
8. Determine the Galois group of the following polynomials over the given field (the symbol ζ_{n} stands for a primitive nth root of unity).
a) $x^{7}+11$ over $\mathbb{Q}\left(\zeta_{7}\right)$,
b) $x^{7}+11$ over \mathbb{R},
9. Suppose that A is a finite abelian group of order n and write $n=p^{k} m$ where p is a prime number and $\operatorname{gcd}(p, m)=1$. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.
10. Let R be a ring and let M be a finitely generated projective R-module. Prove that $\operatorname{Hom}(P, R)$ is a finitely generated projective R-module.
