Algebra Preliminary Examination

May 2016
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital module".
- This exam has two pages.

1. Let R be a commutative ring with identity $1 \neq 0$. Let Q be a proper ideal of R. We say that Q is primary if whenever $a b \in Q$ and $a \notin Q$ then $b^{n} \in Q$ for some positive integer n. Also, recall that an element $x \in R$ is said to be nilpotent if $x^{m}=0$ for some positive integer m.
(a) Prove that a prime ideal of R is primary.
(b) Prove that an ideal Q of R is primary if and only if every zero divisor in R / Q is a nilpotent element of R / Q.
(c) Prove that if Q is a primary ideal, then $\sqrt{Q}:=\left\{r \in R \mid r^{n} \in Q\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$ is a prime ideal.
2. Let I and J be ideals in a commutative ring R such that $I+J=R$. Let M and N be R-modules such that $I M=0=J N$. Prove that $M \otimes_{R} N=0$.
3. Let V be a finite dimensional vector space and $\varphi: V \rightarrow V$ be an idempotent linear transformation (i.e., $\varphi^{2}=\varphi$). Prove that $V=\operatorname{image}(\varphi) \oplus \operatorname{ker}(\varphi)$.
4. Let R be an integral domain such that every R-module is flat. Prove that R is a field.
5. Let R be a non-zero commutative ring and $S \subseteq R$ be a multiplicatively closed subset. Given an R-module homomorphism $h: M \rightarrow N$, we define $S^{-1} h: S^{-1} M \rightarrow S^{-1} N$ by $m / s \mapsto h(m) / s$. You may assume that $S^{-1} h$ is an $S^{-1} R$-module homomorphism.
(a) Let $g: M \rightarrow N$ and $f: L \rightarrow M$ be two R-module homomorphisms. Prove that

$$
S^{-1}(g \circ f)=\left(S^{-1} g\right) \circ\left(S^{-1} f\right)
$$

(b) Suppose that the sequence

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}
$$

is exact at M. Prove that the sequence

$$
S^{-1} M^{\prime} \xrightarrow{S^{-1} f} S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M^{\prime \prime}
$$

is exact at $S^{-1} M$.
6. Let W_{1} and W_{2} be finite-dimensional subspaces of a vector space V over the field F. Prove that

$$
\operatorname{dim}_{F}\left(W_{1}+W_{2}\right)=\operatorname{dim}_{F}\left(W_{1}\right)+\operatorname{dim}_{F}\left(W_{2}\right)-\operatorname{dim}_{F}\left(W_{1} \cap W_{2}\right)
$$

7. Let p be a prime number and let S_{p} be the permutation group on the set $A=\{1,2, \ldots, p\}$.
(a) Prove that if $\sigma \in S_{p}$ is a permutation of order p, then σ is a p-cycle.
(b) Let G be a subgroup of S_{p}. Prove that if the group action $G \times A \rightarrow A$ given by $\sigma \cdot k=\sigma(k)$ is transitive, then G contains a p-cycle.
8. Prove that every group of order 105 is solvable.
9. Let p be a prime and let \mathbb{F}_{p} be the finite field with p elements. Suppose that $g(x) \in \mathbb{F}_{p}[x]$ is an irreducible polynomial with $\operatorname{deg}(g)=d$. Prove that if d divides n, then $g(x)$ divides $x^{p^{n}}-x$ in $\mathbb{F}_{p}[x]$.
10. Let ω_{8} be a primitive $8^{\text {th }}$ root of unity. Exhibit (with proof) the complete subfield lattice of $\mathbb{Q}\left(\omega_{8}\right)$.
