PH.D. PRELIMINARY EXAMINATION IN ALGEBRA

SAMPLE TEST 1995

Notation. In the following examination R denotes a ring. The integers are denoted by \mathbb{Z} , and the rational numbers are denoted by \mathbb{Q} . We denote by p a prime number of \mathbb{Z} .

Problems.

- (1) Show that every group of order p^2 is Abelian.
- (2) Let p be the smallest prime dividing the order of a finite group. Show that every subgroup of index p is normal.
- (3) Every p-group is nilpotent.
- (4) Let R be a commutative Noetherian ring. Show that R[x] is a Noetherian ring.
- (5) Let $\phi: M \to N$ be a monomorphism of R-modules, let E be an injective R-module and let $\overline{\phi}: Hom_R(N, E) \to Hom_R(M, E)$

be the map given by $\overline{\phi}: g \mapsto f \circ \phi$. Show that $\overline{\phi}$ is an epimorphism of Abelian groups.

- (6) Show that every finite division ring is a field.
- (7) If $k \subseteq E \subseteq K$ is a tower of fields with e/k Galois and K/E Galois and every $\sigma \in Aut_k(E)$ is extendable to K then show K/k is Galois.
- (8) What is the Galois group of $x^5 2$ over \mathbb{Q} ?
- (9) Define the tensor product $M \otimes N$ of the *R*-modules *M* and *N*.
- (10) If M is a simple R-module, show that there is an epimorphism $\phi : R \to M$.