Algebra Preliminary Examination
 September 2013

Directions: Show all work for full credit. For this exam, R always denotes a commutative ring with identity and M denotes a unital R-module. Good luck and just do the best you can.

1. How many elements of order 7 must be in a simple group of order 168 ? Justify your answer.
2. Let S_{n} denote the group of permutations on the set $\{1,2, \ldots, n\}$ and let A_{n} denote the subgroup of all even permutations. Prove that if H is a subgroup of S_{n} such that $H \nsubseteq A_{n}$, then exactly half of the permutations of H are even.
3. Consider the ring $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$.
(a) Prove that $\mathbb{Z}[\sqrt{-5}]$ is a Noetherian ring.
(b) Is $\mathbb{Z}[\sqrt{-5}]$ a UFD? Briefly justify your answer.
4. For each prime ideal P of a ring R, define $\iota_{P}: R \rightarrow R_{P}$ to be the natural ring homomorphism given by $\iota_{P}(r)=\frac{r}{1}$.
(a) Prove that r is a unit in R if and only if $\iota_{P}(r)$ is a unit in R_{P} for each prime ideal P of R.
(b) Prove that $r=0$ if and only if $\iota_{P}(r)=0$ for each prime ideal P of R.
5. Let M be an R-module and let and let I be an ideal of the ring R. Prove that there exists an R-module isomorphism

$$
R / I \otimes_{R} M \simeq M / I M
$$

6. An R-module M is called finitely presented if there exists an exact sequence of R-modules $R^{m} \longrightarrow R^{n} \longrightarrow M \longrightarrow 0$ for some positive integers m, n. Prove that every finitely generated projective R-module is finitely presented.
7. Let $R \subset T$ be an extension of commutative rings (sharing the same 1). An element $t \in T$ is said to be integral over R if there exists a monic polynomial $f \in R[x]$ such that $f(t)=0$. If $\alpha \in T$, prove that α is integral over R if and only if the ring $R[\alpha]$ is finitely generated as an R-module.
8. Let V be a finite diminsional vector space over the field \mathbb{Q} of rational numbers and let $\theta \in \operatorname{Hom}(V, V)$ be an invertible linear transformation. Prove that if θ satisfies the relation $\theta^{-1}=\theta^{2}+\theta$, then 3 divides $\operatorname{dim}(V)$.
9. Suppose that $p(x) \in F[x]$ is irreducible with $\operatorname{deg}(p)=n$ and suppose that K / F is a finite field extension with $[K: F]=m$. Prove that if $\operatorname{gcd}(m, n)=1$, then $p(x)$ is irreducible over K.
10. Determine all subfields of $\mathbb{Q}(i, \sqrt{2})$ and prove that your determination is complete.
