In this exam, the term "ring" is short for "commutative ring with identity" and "module" means "unital module".

1. Let I and J be ideals of a ring R such that $I+J=R$. Prove directly (without using the Chinese Remainder Theorem) that there is a ring isomorphism $R /(I \cap J) \xrightarrow{\cong} R / I \times R / J$.
2. Let I and J be ideals of a ring R. Prove that $I \cup J$ is an ideal of R if and only if $I \subseteq J$ or $J \subseteq I$.
3. Let R be a ring, and let $r \in R$. Let $R[X]$ be the polynomial ring in one variable over R, and let R_{r} be the localization $S^{-1} R$ where $S=\left\{1, r, r^{2}, \ldots\right\}$. Prove that there is a ring isomorphism $R[X] /(r X-1) \cong R_{r}$.
4. Let R be an integral domain. Prove that if R is injective as an R-module, then R is a field.
5. Let R be a principal ideal domain (PID), and let M be a finitely generated R-module. Prove that if M is flat over R, then it is free over R.
6. Let K be a field, and let $K(X)$ be the field of fractions of the polynomial ring $K[X]$ in one variable. Prove that $K(X)$ is generated as a $K[X]$-module by the set

$$
\{1\} \bigcup\left\{1 /(f(X))^{n} \mid f(X) \in K[X] \text { is a monic and irreducible, and } n \in \mathbb{N}\right\}
$$

Explain how this is related to partial fraction decompositions.
7. Let V and W be finite dimensional subspaces of a vector space over a field F. Prove that

$$
\operatorname{dim}_{F}(V)+\operatorname{dim}_{F}(W)=\operatorname{dim}_{F}(V+W)+\operatorname{dim}_{F}(V \cap W)
$$

where $\operatorname{dim}_{F}(-)$ is the vector space dimension over F.
8. Let A be an $n \times m$ matrix with entries in a field k. Let the "row rank" of A be the vector space dimension of the span of the rows of A. Let the "column rank" of A be the vector space dimension of the span of the columns of A. Prove that the row rank of A equals the column rank of A.
9. Prove that there is no simple group of order 36 .
10. Prove that the Galois group of the algebraic closure of a finite field must be abelian.

