Algebra Prelim

September 2012

In this exam, the term "ring" is short for "commutative ring with identity" and "module" means "unital module". Let R be a ring.

Full credit will only be given for solutions that are completely justified.

- 1. Show that the polynomial $x^2 + y^2 1$ is irreducible in $\mathbb{R}[x, y]$.
- 2. Let p be a prime number. Show that an element in the symmetric group S_n has order p if and only if it is a product of commuting p-cycles.

3. Is the matrix
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$
 diagonalizable over \mathbb{C} ?

- 4. Let M be an R-module, and prove that the following conditions are equivalent:
 - (i) M = 0.
 - (ii) For every multiplicatively closed subset $U \subseteq R$, we have $U^{-1}M = 0$,
 - (iii) For every prime ideal $P \subset R$, we have $M_P = 0$.
 - (iv) For every maximal ideal $\mathfrak{m} \subset R$, we have $M_{\mathfrak{m}} = 0$.
- 5. Give an example of a finite normal field extension that is not Galois.
- 6. An *R*-module $M \neq 0$ is simple if its only submodules are 0 and *M*. Let *M* be a simple *R*-module. Prove that there is a unique maximal ideal $\mathfrak{m} \subset R$ such that $M \cong R/\mathfrak{m}$.
- 7. Prove that the \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is injective. Is it projective?
- 8. Let $U \subseteq R$ be multiplicatively closed, and let $I \subseteq R$ be an ideal that is maximal among all ideals J such that $J \cap U = \emptyset$. Prove that I is prime.
- 9. Let $G = \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z})$ denote the group of invertible 2×2 matrices over the field $\mathbb{Z}/3\mathbb{Z}$. List the prime numbers p such that G has a non-trivial p-subgroup.
- 10. Let G be a finite abelian group and H a subgroup of G. Show that G has a subgroup isomorphic to G/H.