ALGEBRA PRELIMINARY EXAMINATION

MAY 2005

NOTES. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are the integers, the rational numbers, the real numbers, and the complex numbers respectively. All rings have identity unless specifically indicated otherwise.

- (1) Show that there is no simple group of order 500.
- (2) Let G be a finite group and $H \subsetneq G$ a proper subgroup. Show that $\bigcup_{x \in G} x^{-1} H x \subsetneq G$.
- (3) Prove that any group of order p^2 (p a positive prime integer) is abelian.
- (4) Let I be an injective R-module and $J \subseteq I$ a submodule. Show that J is injective if and only if J is a direct summand of I.
- (5) Let R be a commutative ring with identity with the property that for every nonzero ideal the quotient ring R/I is finite. Show that either R is a field or every nonzero prime ideal of R is maximal.
- (6) Let R be commutative with identity and $\mathfrak{P} \subseteq R$ an ideal. Show that the ideal $\mathfrak{P}[x] \subseteq R[x]$ is prime if and only if \mathfrak{P} is a prime ideal of R.
- (7) Find all possible Jordan canonical forms of a 4×4 matrix over \mathbb{Q} that is annihilated by the polynomial $x^2 6x + 9$. For each form that you find, compute its minimal polynomial.
- (8) Let F be the splitting field over \mathbb{Q} of the polynomial $x^4 2x^2 + 3$. Compute $\operatorname{Gal}(F/\mathbb{Q})$.
- (9) Let R be commutative with identity and J(R) the Jacobson radical of R. Show that $x \in J(R)$ if and only if 1 + rx is a unit in R for all $r \in R$ (we define the Jacobson radical to be the intersection of all maximal ideals of R).
- (10) Let R be an integral domain. Show that the following conditions are equivalent.
 - a) Every R-module is projective.
 - b) Every R-module is free.
 - c) R is a field.