ALGEBRA PRELIMINARY EXAMINATION

JANUARY 2006

Abstract

Notes. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are the integers, the rational numbers, the real numbers, and the complex numbers respectively. All rings have identity unless specifically indicated otherwise, and all R-modules are unitary.

(1) Let $p \in \mathbb{N}$ be prime. Show that any group of order p^{2} is abelian.
(2) Show that any group of order 280 is not simple.
(3) Let a finite group G acts transitively on a finite set Ω of cardinality greater than one. Show that there is an element of G that fixes no element of Ω.
(4) Let R be a commutative ring with 1 and I an injective R-module. Show that if the sequence

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is exact, then the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, I) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(B, I) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(A, I) \longrightarrow 0
$$

is also exact.
(5) Let R be a commutative ring with 1 and let J be the intersection of all maximal ideals of R.
(a) Show that if $x \in J$ and $r \in R$ then $1+r x$ is a unit in R.
(b) Show that if M is a finitely generated R-module with $M=J M$ then $M=0$.
(6) Let M be a simple left R-module. Show that a homomorphism $f: M \longrightarrow$ M is either an isomorphism or the zero homomorphism and hence $\operatorname{End}_{R}(M)$ is a division ring.
(7) Suppose I is a proper ideal of a domain R that is injective as a R-module, show $I=0$.
(8) Show that if R is an integral domain with the property that R / I is a finite ring for any nonzero ideal I, then every nonzero prime ideal of R is maximal.
(9) Find the minimal polynomial over \mathbb{Q} of the element $\sqrt{2+\sqrt{2}} \in \overline{\mathbb{Q}}$ and find the Galois group of the Galois closure of $\mathbb{Q}[\sqrt{2+\sqrt{2}}]$ over \mathbb{Q}.
(10) Show for a field K of characteristic $p>0$ that the following are equivalent:
(a) Every finite field extension of K is separable.
(b) The Frobenius homomorphism $F: K \longrightarrow K$ given by $F: x \mapsto x^{p}$ is an epimorphism.

