ALGEBRA PRELIMINARY EXAMINATION

MAY 2006

Abstract

In this examination all fields are commutative. All rings contain 1 and all modules are unitary. The rational numbers are denoted by \mathbb{Q}. If I and J are ideals of a commutative ring then $(I: J)$ is the ideal of elements x of the ring such that $x J \subseteq I$. The spectrum of a commutative ring is the topological space with the Zariski topology whose elements are the prime ideals of the ring.

(1) Let M, N be R-modules and $f, g \in \operatorname{Hom}_{R}(M, N)$. Show that there exists a module E and a homomorphism $e \in \operatorname{Hom}_{R}(E, M)$ such that $f \circ e=$ $g \circ e$ in $\operatorname{Hom}_{R}(E, N)$ and such that given any other R-module K with homomorphism $k \in \operatorname{Hom}_{R}(K, M)$ with the property that $f \circ k=g \circ k$ in $\operatorname{Hom}_{R}(K, N)$ then there exists a homomorphism $i \in \operatorname{Hom}_{R}(K, E)$ so that the diagram

commutes.
(2) Show that every group of order 105 is solvable.
(3) Show that if p is a prime integer there are no non-Abelian groups of order p^{2}.
(4) Find the Galois group of $x^{3}-x-1$ over \mathbb{Q}.
(5) Let R be a commutative ring, \mathfrak{p} and element of $\operatorname{Spec}(R)$ and M an R module. Show that

$$
R_{\mathfrak{p}} \otimes_{R} M \cong M_{\mathfrak{p}} .
$$

(6) Let k be a field and $f(x)=a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \in k[x]$ with $a_{0} \neq 0$. Show that f has distinct roots in every extension of k if and only if

$$
\left|\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & 0 \\
0 & a_{0} & a_{1} & a_{2} & a_{3} \\
3 a_{0} & 2 a_{1} & a_{2} & 0 & 0 \\
0 & 3 a_{0} & 2 a_{1} & a_{2} & 0 \\
0 & 0 & 3 a_{0} & 2 a_{1} & a_{2}
\end{array}\right| \neq 0
$$

(7) Let k be a perfect field of positive characteristic. Define an action of $k[x]$ on an extension field E that is finite over k by

$$
x \cdot v=F(v)
$$

where $F: E \longrightarrow E$ is the Frobenius homomorphism. Find the decomposition of E into irreducible $k[x]$-modules when $E=\mathbb{F}_{81}$ and $k=\mathbb{F}_{3}$.
(8) Let R be a commutative domain and M a R-module. Let $\operatorname{Max}(R)$ be the set of maximal ideals of R and $M_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} M$ the localization of M at the prime ideal \mathfrak{p}. Show that there is a monomorphism

$$
M \longrightarrow \prod_{\mathfrak{m} \in \operatorname{Max}(R)} M_{\mathfrak{m}}
$$

(9) Let R be a commutative domain. Show that the only idempotents of R are 0 and 1.
(10) Let R be a commutative Noetherian domain with unique maximal ideal \mathfrak{m}. An ideal \mathfrak{q} of R is called irreducible if whenever there are ideals \mathfrak{q}_{i} with

$$
\mathfrak{q}=\mathfrak{q}_{1} \cap \mathfrak{q}_{2}
$$

then $\mathfrak{q}=\mathfrak{q}_{1}$ or $\mathfrak{q}=\mathfrak{q}_{2}$.
Suppose that \mathfrak{q} is an \mathfrak{m}-primary ideal show that if $(\mathfrak{q}: \mathfrak{m}) / \mathfrak{q}$ is a one dimensional R / \mathfrak{m}-vector space then \mathfrak{q} is irreducible.

