ALGEBRA PRELIMINARY EXAMINATION

MAY 2006

ABSTRACT. In this examination all fields are commutative. All rings contain 1 and all modules are unitary. The rational numbers are denoted by \mathbb{Q} . If I and J are ideals of a commutative ring then (I : J) is the ideal of elements x of the ring such that $xJ \subseteq I$. The spectrum of a commutative ring is the topological space with the Zariski topology whose elements are the prime ideals of the ring.

(1) Let M, N be R-modules and $f, g \in \operatorname{Hom}_R(M, N)$. Show that there exists a module E and a homomorphism $e \in \operatorname{Hom}_R(E, M)$ such that $f \circ e = g \circ e$ in $\operatorname{Hom}_R(E, N)$ and such that given any other R-module K with homomorphism $k \in \operatorname{Hom}_R(K, M)$ with the property that $f \circ k = g \circ k$ in $\operatorname{Hom}_R(K, N)$ then there exists a homomorphism $i \in \operatorname{Hom}_R(K, E)$ so that the diagram

commutes.

- (2) Show that every group of order 105 is solvable.
- (3) Show that if p is a prime integer there are no non-Abelian groups of order p^2 .
- (4) Find the Galois group of $x^3 x 1$ over \mathbb{Q} .
- (5) Let R be a commutative ring, \mathfrak{p} and element of $\operatorname{Spec}(R)$ and M an R-module. Show that

$$R_{\mathfrak{p}} \otimes_R M \cong M_{\mathfrak{p}}$$

(6) Let k be a field and $f(x) = a_0 x^3 + a_1 x^2 + a_2 x + a_3 \in k[x]$ with $a_0 \neq 0$. Show that f has distinct roots in every extension of k if and only if

$$\begin{vmatrix} a_0 & a_1 & a_2 & a_3 & 0 \\ 0 & a_0 & a_1 & a_2 & a_3 \\ 3a_0 & 2a_1 & a_2 & 0 & 0 \\ 0 & 3a_0 & 2a_1 & a_2 & 0 \\ 0 & 0 & 3a_0 & 2a_1 & a_2 \end{vmatrix} \neq 0.$$

(7) Let k be a perfect field of positive characteristic. Define an action of k[x] on an extension field E that is finite over k by

$$x \cdot v = F(v)$$

where $F: E \longrightarrow E$ is the Frobenius homomorphism. Find the decomposition of E into irreducible k[x]-modules when $E = \mathbb{F}_{81}$ and $k = \mathbb{F}_3$.

(8) Let R be a commutative domain and M a R-module. Let Max(R) be the set of maximal ideals of R and $M_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R M$ the localization of M at the prime ideal \mathfrak{p} . Show that there is a monomorphism

$$M \longrightarrow \prod_{\mathfrak{m} \in \operatorname{Max}(R)} M_{\mathfrak{m}}.$$

- (9) Let R be a commutative domain. Show that the only idempotents of R are 0 and 1.
- (10) Let R be a commutative Noetherian domain with unique maximal ideal \mathfrak{m} . An ideal \mathfrak{q} of R is called irreducible if whenever there are ideals \mathfrak{q}_i with

 $\mathfrak{q}=\mathfrak{q}_1\cap\mathfrak{q}_2$

then $\mathbf{q} = \mathbf{q}_1$ or $\mathbf{q} = \mathbf{q}_2$.

Suppose that \mathfrak{q} is an \mathfrak{m} -primary ideal show that if $(\mathfrak{q} : \mathfrak{m})/\mathfrak{q}$ is a one dimensional R/\mathfrak{m} -vector space then \mathfrak{q} is irreducible.