ALGEBRA PRELIMINARY EXAMINATION

AUGUST 2006

ABSTRACT. In this examination all fields are commutative. All rings contain 1 and all modules are unitary. The rational numbers are denoted by \mathbb{Q} .

- (1) Show that any group of order p^2q (where p and q are distinct prime integers) is the semidirect product of two abelian groups.
- (2) Show that there is no simple group of order 392.
- (3) Find (up to isomorphism type) all subgroups of S_5 of order 20.
- (4) Let R be a commutative Noetherian ring. Show that the nilradical (that is, the set of nilpotent elements of R) is a nilpotent ideal.
- (5) Let $R \subseteq T$ be commutative rings with identity and let P be a projective R-module. Show that $P \otimes_R T$ is a projective T-module.
- (6) Let D be a PID with quotient field K. Show that any overring (that is, a ring contained between D and K) of D is of the form D_S for some multiplicatively closed subset $S \subseteq D$.
- (7) Let M be a free \mathbb{Z} -module that is also injective. Show that M = 0.
- (8) Suppose that $f(x) \in \mathbb{Q}[x]$ is a fifth degree, irreducible polynomial with Galois group A_5 . Let K be the splitting field of f(x) over \mathbb{Q} . Does there exist a field E ($\mathbb{Q} \subseteq E \subseteq K$) such that $[E : \mathbb{Q}] = 2$?
- (9) An R-module P is said to be projective if given any surjective R-module homomorphism $f: A \longrightarrow B$ and R-module homomorphism $g: P \longrightarrow B$, then there is an R-module homomorphism $h: P \longrightarrow A$ such that fh = g.

$$A \xrightarrow{h \not i}_{f} B \longrightarrow 0$$

р

Show that any free R-module is projective.

- (10) Let I ⊆ R be an ideal. Show that the following conditions are equivalent.
 a) I is radical and primary.
 - b) I is prime.