ALGEBRA PRELIMINARY EXAMINATION

JANUARY 2007

ABSTRACT. In this examination all fields are commutative. All rings contain 1 and all modules are unitary. The rational numbers are denoted by \mathbb{Q} and the real numbers are denoted by \mathbb{R} .

(1) Let G be a group and Inn(G) the inner automorphisms of G (that is, the automorphisms of G induced by conjugation by an element of G). Show that

$$\operatorname{Inn}(G) \cong G/Z(G)$$

where Z(G) denotes the center of G.

- (2) Show that there is no subgroup of A_6 of order 90.
- (3) Show that if R is a finite commutative ring (not necessarily with identity), then every element of R is either a unit or a zero divisor.
- (4) Show that the commutative ring, R, is Noetherian if and only if every prime ideal of R is finitely generated.
- (5) Show that if R is a domain with every nonzero prime ideal invertible, then R is Noetherian.
- (6) Show that there is no finite subgroup of the multiplicative group ℝ* of order exceeding two.
- (7) Let R be a commutative ring with identity with I an injective R-module and P a projective R-module. Show that the R-module $I \otimes_R P$ is an injective R-module.
- (8) Let F be the splitting field of the polynomial $x^3 7$ (over the rational numbers \mathbb{Q}). Find all fields properly contained between \mathbb{Q} and F and prove that your list is complete.
- (9) Find the Galois group of the polynomial $x^4 2x^2 1$ over
 - a) the real numbers \mathbb{R} and
 - b) the rational numbers \mathbb{Q} .
- (10) Let F be a field of characteristic p > 0 and z an element of a field extension of F that is algebraic over F. Show that z is separable over F if and only if $F(z) = F(z^{p^n})$ for all $n \ge 1$.