ALGEBRA PRELIMINARY EXAMINATION

JANUARY 2012

(1) Show that no group of order 80 is simple.
(2) Show that every finite group of order p^{n} (where p is a positive prime integer) has a nontrivial center.
(3) Let G be a group with center Z. Show that if the index of Z in G is n, then G has at most n^{2} distinct commutators.
(4) Let R be an integral domain and $I \subsetneq R$ a proper ideal. Show that if R / I is a projective R-module, then $I=0$.
(5) Let R be a commutative ring with identity, and let P be an R-module. Show that P is a projective R-module if and only if given any R-module epimorphism $g: B \longrightarrow C$, the induced R-module homomorphism

$$
\bar{g}: \operatorname{Hom}_{R}(P, B) \longrightarrow \operatorname{Hom}_{R}(P, C)
$$

is onto.
(6) Let R be a commutative ring with identity and $n \in \mathbb{N}$. Suppose that $I \subseteq R$ be an ideal that cannot be generated with n elements. Let X_{n} be the collection of ideals of R that cannot be generated by n elements. Show that the set X_{n} has a maximal element.
(7) We say an integral domain R with quotient field K is a valuation domain if given nonzero $a, b \in R$, then either a divides b or b divides a. Show that if R is a valuation domain with quotient field K and T is a domain such that $R \subseteq T \subseteq K$, then T is a valuation domain.
(8) Find the Galois group of the extension $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}.
(9) Let \mathbb{F}_{2} be the field of two elements. Let \mathbb{K} be the extension of \mathbb{F}_{2} generated by adjoining all of the roots of the polynomial $x^{5}+x+1$. Find the Galois group of \mathbb{K} over \mathbb{F}_{2}.
(10) We say that an integral domain R is ACCP (ascending chain condition on principal ideals) if there is no infinitely ascending chain of principal ideals. Show that if every ideal of R is finitely generated, then R is ACCP.

