ALGEBRA PRELIMINARY EXAMINATION

SEPTEMBER 2011

- (1) Let $n \ge 3$ be a natural number.
 - (a) Show that A_n has a subgroup of index n.
 - (b) Show that if $n \ge 5$ and 1 < k < n, then A_n has no subgroup of index k.
- (2) Show that there is no simple group of order 96.
- (3) Let G be a finite group (|G| > 4) that is generated by two elements of order 2. Show that G is dihedral.
- (4) Let R be a commutative ring with identity. Show that if I is an ideal that is maximal with respect to being non-principal, then I is prime.
- (5) Let R be a commutative ring with identity and P an R-module. Show that the following conditions are equivalent.
 - a) P is projective.
 - b) Given the short exact sequence of R-modules

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0,$$

the induced sequence of R-modules

$$0 \longrightarrow Hom_R(P, A) \xrightarrow{\overline{f}} Hom_R(P, B) \xrightarrow{\overline{g}} Hom_R(P, C) \longrightarrow 0$$

exact.

is also

- (6) Let R be a commutative ring with identity. Show that if P, Q are projective R-modules, then so is $P \otimes_R Q$.
- (7) Let R be a commutative ring with identity. Recall that the Jacobson radical of R(J(R)) is the intersection of all maximal ideals of R. Show that $x \in J(R)$ if and only if 1 + rx is a unit in R for all $r \in R$.
- (8) Give an example of a field extension $K \subseteq F$ such that [F:K] = 2, yet F is not Galois over K. (9) Show that if $x^3 + Ax^2 + Bx + C$ is irreducible over \mathbb{Q} and has Galois group
- $\mathbb{Z}/3\mathbb{Z}$ then $A^2 > 3B$.
- (10) Show that R is a UFD with the property that every nonzero prime ideal of R is maximal, then R is a PID.