ALGEBRA PRELIMINARY EXAMINATION

SEPTEMBER 2011

(1) Let $n \geq 3$ be a natural number.
(a) Show that A_{n} has a subgroup of index n.
(b) Show that if $n \geq 5$ and $1<k<n$, then A_{n} has no subgroup of index k.
(2) Show that there is no simple group of order 96.
(3) Let G be a finite group $(|G|>4)$ that is generated by two elements of order 2. Show that G is dihedral.
(4) Let R be a commutative ring with identity. Show that if I is an ideal that is maximal with respect to being non-principal, then I is prime.
(5) Let R be a commutative ring with identity and P an R-module. Show that the following conditions are equivalent.
a) P is projective.
b) Given the short exact sequence of R-modules

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0,
$$

the induced sequence of R-modules

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, A) \xrightarrow{\bar{f}} \operatorname{Hom}_{R}(P, B) \xrightarrow{\bar{g}} \operatorname{Hom}_{R}(P, C) \longrightarrow 0
$$

is also exact.
(6) Let R be a commutative ring with identity. Show that if P, Q are projective R-modules, then so is $P \otimes_{R} Q$.
(7) Let R be a commutative ring with identity. Recall that the Jacobson radical of $R(J(R))$ is the intersection of all maximal ideals of R. Show that $x \in J(R)$ if and only if $1+r x$ is a unit in R for all $r \in R$.
(8) Give an example of a field extension $K \subseteq F$ such that $[F: K]=2$, yet F is not Galois over K.
(9) Show that if $x^{3}+A x^{2}+B x+C$ is irreducible over \mathbb{Q} and has Galois group $\mathbb{Z} / 3 \mathbb{Z}$ then $A^{2}>3 B$.
(10) Show that R is a UFD with the property that every nonzero prime ideal of R is maximal, then R is a PID.

