Algebra Preliminary Examination

January 2019

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- For this exam, you have **two options**:
 - Option 1: Submit solutions to questions from Part A and from Part B.
 - Option 2: Submit solutions to questions from Part A and from Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module".

If $\phi: R \to S$ is a ring homomorphism, we also assume $\phi(1_R) = 1_S$.

• This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Let G be \mathbb{Z} -module generated by v_1, v_2, v_3 subject to the relations

$$-4v_1 + 2v_2 - 2v_3 = 0$$

$$-6v_1 + 10v_2 + 4v_3 = 0$$

$$-12v_1 + 6v_2 - 6v_3 = 0$$

Find the invariant factors of G.

- **2.** Let *R* be a commutative ring and let *I*, *J* be ideals of *R* such that R/IJ has no nonzero nilpotent elements. Prove that $IJ = I \cap J$.
- **3.** Let R be a commutative ring, M an R-module, and $f: M \to M$ an R-module homomorphism such that $f \circ f = f$. Prove that $M = \text{Ker } f \oplus \text{Im } f$ (internal direct sum).
- 4. Let $A \subseteq B$ be an extension of integral domains such that the induced extension of quotient fields $Q(A) \subseteq Q(B)$ is finite. Let $S = A \setminus \{0\}$. Prove that $S^{-1}B = Q(B)$.
- 5. Let $R = \mathbb{Z}[i\sqrt{5}]$.
 - (a) Show that 3 is an irreducible element of R.
 - (b) Prove that the elements 6 and $2 + 2i\sqrt{5}$ do not have a greatest common divisor.
- **6.** Let A be an integral domain with fraction field K. For an A-module T, we denote as usual $Tor(T) = \{x \in T \mid ax = 0 \text{ for some } a \in A \setminus \{0\}\}$. Let M be a finitely generated A-module and let r denote the maximal number of linearly independent elements in M.
 - (a) Prove that $r = \dim_K (K \otimes_A M)$.
 - (b) Prove that there exists a free A-submodule N of M such that rank N = r and Tor(M/N) = M/N.
 - (c) Assume that Tor(M) = (0). Prove that there exists an injective A-module homomorphism $M \to A^r$.

B. Groups, Fields, and Galois Theory (option 1)

- 1. Recall that $D_8 = \langle r, s : r^4 = e = s^2, rs = sr^{-1} \rangle$ is the dihedral group of order 8 acting on the verices of a square, and that $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is the Hamiltonian quaternion group of order 8. Prove or disprove:
 - (a) The symmetric group S_4 contains a subgroup isomorphic to D_8 .
 - (b) The symmetric group S_4 contains a subgroup isomorphic to Q_8 .
- **2.** Let p and q be (not necessarily distinct) primes. Prove that a finite group of order p^2q must be solvable.
- **3.** Let $u \in \mathbb{C}$ be the complex number $u = \sqrt{1 \sqrt[3]{2}}$. Determine the degree $[\mathbb{Q}(u) : \mathbb{Q}]$ of the field extension $\mathbb{Q} \subseteq Q(u)$ and find the (irreducible) minimal polynomial $m_{u,\mathbb{Q}}(x) \in \mathbb{Q}[x]$.
- 4. Let K be the splitting field of the polynomial $p(x) = x^3 7$ over the field \mathbb{Q} of rational numbers. Exhibit with proof all intermediate fields between \mathbb{Q} and K.

C. Homological Algebra (option 2)

- **1.** Let R be a commutative ring and I an ideal of R.
 - (a) Assume that R/I is a flat *R*-module. Prove that $I = I^2$.
 - (b) Assume that R/I is a projective *R*-module. Prove that there exists $e \in R$ idempotent such that I = (e).
- **2.** Let $0 \to M_1 \to M \to M_2 \to 0$ be an exact sequence of R modules. Assume that $pd_R M < \sup\{pd_R M_1, pd_R M_2\}$. Prove that

$$\operatorname{pd}_R M_2 = \operatorname{pd}_R M_1 + 1.$$

- **3.** Let R be a commutative ring, M an R-module, and a_1, a_2 an M-regular sequence.
 - (a) Prove that a_1 is a non-zero-divisor on M/a_2M .
 - Assume, in addition, that $I := (a_1, a_2) \subseteq \operatorname{Jac}(R)$ and M is finitely generated.
 - (b) Prove that a_2, a_1 is an *M*-regular sequence.
- 4. Let R be a commutative ring and let $0 \to A \to B \to C \to 0$ be an exact sequence of finitely generated R-modules. Let I be an ideal of R contained in its Jacobson radical. Prove that

 $\operatorname{depth}_{I} C \geq \min\{\operatorname{depth}_{I} A - 1, \operatorname{depth}_{I} B\}.$