Algebra Preliminary Examination

January 2019

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- For this exam, you have two options:
- Option 1: Submit solutions to questions from Part A and from Part B.
- Option 2: Submit solutions to questions from Part A and from Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\phi: R \rightarrow S$ is a ring homomorphism, we also assume $\phi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Let G be \mathbb{Z}-module generated by v_{1}, v_{2}, v_{3} subject to the relations

$$
\begin{array}{r}
-4 v_{1}+2 v_{2}-2 v_{3}=0 \\
-6 v_{1}+10 v_{2}+4 v_{3}=0 \\
-12 v_{1}+6 v_{2}-6 v_{3}=0
\end{array}
$$

Find the invariant factors of G.
2. Let R be a commutative ring and let I, J be ideals of R such that $R / I J$ has no nonzero nilpotent elements. Prove that $I J=I \cap J$.
3. Let R be a commutative ring, M an R-module, and $f: M \rightarrow M$ an R-module homomorphism such that $f \circ f=f$. Prove that $M=\operatorname{Ker} f \oplus \operatorname{Im} f$ (internal direct sum).
4. Let $A \subseteq B$ be an extension of integral domains such that the induced extension of quotient fields $Q(A) \subseteq Q(B)$ is finite. Let $S=A \backslash\{0\}$. Prove that $S^{-1} B=Q(B)$.
5. Let $R=\mathbb{Z}[i \sqrt{5}]$.
(a) Show that 3 is an irreducible element of R.
(b) Prove that the elements 6 and $2+2 i \sqrt{5}$ do not have a greatest common divisor.
6. Let A be an integral domain with fraction field K. For an A-module T, we denote as usual $\operatorname{Tor}(T)=\{x \in T \mid a x=0$ for some $a \in A \backslash\{0\}\}$. Let M be a finitely generated A-module and let r denote the maximal number of linearly independent elements in M.
(a) Prove that $r=\operatorname{dim}_{K}\left(K \otimes_{A} M\right)$.
(b) Prove that there exists a free A-submodule N of M such that rank $N=r$ and $\operatorname{Tor}(M / N)=$ M / N.
(c) Assume that $\operatorname{Tor}(M)=(0)$. Prove that there exists an injective A-module homomorphism $M \rightarrow A^{r}$.

B. Groups, Fields, and Galois Theory (option 1)

1. Recall that $D_{8}=\left\langle r, s: r^{4}=e=s^{2}, r s=s r^{-1}\right\rangle$ is the dihedral group of order 8 acting on the verices of a square, and that $Q_{8}=\{ \pm \mathbf{1}, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ is the Hamiltonian quaternion group of order 8. Prove or disprove:
(a) The symmetric group S_{4} contains a subgroup isomorphic to D_{8}.
(b) The symmetric group S_{4} contains a subgroup isomorphic to Q_{8}.
2. Let p and q be (not necessarily distinct) primes. Prove that a finite group of order $p^{2} q$ must be solvable.
3. Let $u \in \mathbb{C}$ be the complex number $u=\sqrt{1-\sqrt[3]{2}}$. Determine the degree $[\mathbb{Q}(u): \mathbb{Q}]$ of the field extension $\mathbb{Q} \subseteq Q(u)$ and find the (irreducible) minimal polynomial $m_{u, \mathbb{Q}}(x) \in \mathbb{Q}[x]$.
4. Let K be the splitting field of the polynomial $p(x)=x^{3}-7$ over the field \mathbb{Q} of rational numbers. Exhibit with proof all intermediate fields between \mathbb{Q} and K.

C. Homological Algebra (option 2)

1. Let R be a commutative ring and I an ideal of R.
(a) Assume that R / I is a flat R-module. Prove that $I=I^{2}$.
(b) Assume that R / I is a projective R-module. Prove that there exists $e \in R$ idempotent such that $I=(e)$.
2. Let $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$ be an exact sequence of R modules. Assume that $\operatorname{pd}_{R} M<$ $\sup \left\{\operatorname{pd}_{R} M_{1}, \operatorname{pd}_{R} M_{2}\right\}$. Prove that

$$
\operatorname{pd}_{R} M_{2}=\operatorname{pd}_{R} M_{1}+1
$$

3. Let R be a commutative ring, M an R-module, and a_{1}, a_{2} an M-regular sequence.
(a) Prove that a_{1} is a non-zero-divisor on $M / a_{2} M$.

Assume, in addition, that $I:=\left(a_{1}, a_{2}\right) \subseteq \operatorname{Jac}(R)$ and M is finitely generated.
(b) Prove that a_{2}, a_{1} is an M-regular sequence.
4. Let R be a commutative ring and let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of finitely generated R-modules. Let I be an ideal of R contained in its Jacobson radical. Prove that

$$
\operatorname{depth}_{I} C \geq \min \left\{\operatorname{depth}_{I} A-1, \operatorname{depth}_{I} B\right\} .
$$

