Algebra Preliminary Examination

August 2020
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra

1. Consider three properties that a ring R might have:

$$
\left(P_{1}\right) \text { Noetherian }\left(P_{2}\right) \text { PID }\left(P_{3}\right) \text { UFD. }
$$

(a) For which $n \in\{1,2,3\}$ is it true that if R has property P_{n} then $R[x]$ has property P_{n} ?
(b) For which $n \in\{1,2,3\}$ is it true that if $R[x]$ has property P_{n} then R has property P_{n} ?

If the implication is true, supply a short proof or just cite a well-known theorem to justify your answer. If it is false, exhibit a counterexample.

2 . Let Σ be the set of all proper ideals of a ring R that consist only of zero-divisors.
(a) Prove that Σ has maximal elements with respect to inclusion.
(b) Prove that every maximal element of Σ is a prime ideal.
3. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the standard basis for the \mathbb{R}-vector space $V=\mathbb{R}^{2}$. Prove that $\left(\mathbf{e}_{1} \otimes \mathbf{e}_{2}\right)+\left(\mathbf{e}_{2} \otimes \mathbf{e}_{1}\right)$ cannot be written as a simple tensor in $V \otimes_{\mathbb{R}} V$.
4. Prove that the quotient module \mathbb{Q} / \mathbb{Z} is not finitely generated as a \mathbb{Z}-module.
5. Let U, V, W be vector spaces over the field F. Prove that if $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear transformations, then $\operatorname{dim}(\operatorname{ker}(T \circ S)) \leq \operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{ker} S)$.
6. Consider the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the rational canonical form for the matrix A over \mathbb{Q}.
(b) Find the Jordan canonical form for the matrix A over \mathbb{C}.

B. Homological Algebra

7. Let R be a commutative ring, M an R-module and $x \in R$ an element that is both R-regular and M-regular. Prove that

$$
\operatorname{pd}_{R / x R} M / x M \leq \operatorname{pd}_{R} M .
$$

8. For a field k, let $T=k[X, Y] /(X Y)$ and denote $x=\bar{X} \in T$. Consider $k \cong T /(x, y) T$ as a T-module.
(a) Compute $\operatorname{Tor}_{n}^{T}(k, T / x T)$ for every $n \geq 0$.
(b) What is $\operatorname{pd}_{T}(T / x T)$?
9. Let R be a principal ideal domain and let $a, b \in R \backslash\{0\}$. Compute $\operatorname{Ext}_{R}^{n}(R / a R, R / b R)$ for all $n \geq 0$.
10. Let R be a commutative noetherian ring and let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of finitely generated R-modules. Let I be an ideal of R contained the Jacobson radical $\operatorname{Jac}(R)$. Prove that:

$$
\operatorname{depth}_{I} B \geq \min \left\{\operatorname{depth}_{I} A, \operatorname{depth}_{I} C\right\}
$$

Moreover, if the sequence is split exact, we have equality, i.e.,

$$
\operatorname{depth}_{I} A \oplus C=\min \left\{\operatorname{depth}_{I} A, \operatorname{depth}_{I} C\right\} .
$$

