Algebra Preliminary Examination August 2017

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi : R \to S$ is a ring homomorphism, then $\varphi(1) = 1$.
- This exam has two pages.
- 1. Let R be a ring.
 - (a) Prove or disprove: If the polynomial ring R[x] is a PID, then R is a field.
 - (b) Prove or disprove: If R is a field, then the polynomial ring R[x, y] is a Euclidean domain.
- 2. Let S be a multiplicatively closed subset of a ring R. Define the saturation of S to be the set $\bar{S} = \{v \in R : v \text{ divides } s \text{ for some } s \in S\}$. Prove that \bar{S} is multiplicatively closed and that there exists a ring isomorphism $S^{-1}R \simeq \bar{S}^{-1}R$.
- 3. Let R be an integral domain and let M be an R-module such that $\operatorname{Hom}_R(M, R/I) = 0$ for all nonzero ideals $I \leq R$. Prove that $\operatorname{Hom}_R(M, R) = 0$.
- 4. Recall that an *R*-module *M* is called divisible if for every nonzero $r \in R$, one has the equality rM = M. Let *R* be a PID and let *Q* be an *R*-module. Prove that *Q* is divisible if and only if it is an injective *R*-module.
- 5. Consider the \mathbb{R} -vector space of all differentiable real-valued functions of a single variable and let V be the subspace spanned by the ordered basis $B = \{t \sin(t), t \cos(t), \sin(t), \cos(t)\}$. Let $\Delta : V \to V$ be the usual differential operator given by $\Delta(\varphi(t)) = \varphi'(t)$.
 - (a) Find the matrix A of the operator Δ relative to the basis B.
 - (b) Find the rational canonical form (over \mathbb{R}) of the matrix A.
 - (c) Find the Jordan canonical form (over \mathbb{C}) of A.

- 6. Let V be an n-dimensional vector space over the field F and let $T: V \to V$ be a linear transformation.
 - (a) Prove that $\ker(T^n) = \ker(T^{n+k})$ and $\operatorname{Im}(T^n) = \operatorname{Im}(T^{n+k})$ for all $k \ge 0$.
 - (b) Prove that $V = \ker(T^n) \oplus \operatorname{Im}(T^n)$.
- 7. Prove that if σ, τ are elements of order 2, 3 (resp.) in A_4 , then $\langle \sigma, \tau \rangle = A_4$.
- 8. Let G be a group and recall that centralizer and normalizer of any subset $P \subseteq G$ are the sets $C_G(P) = \{g \in G : gp = pg \text{ for all } p \in P\}$ and $N_G(P) = \{g \in G : gPg^{-1} = P\}$ respectively. If G is a group of order $660 = 2^2 \cdot 3 \cdot 5 \cdot 11$ and P is a Sylow 11-subgroup such that $C_G(P) = P$, determine the cardinality $|N_G(P)|$ of the normalizer of P in G.
- 9. Let $F \subseteq K$ be an extension of fields such that $[K : F] < \infty$ and let $f(x) \in F[x]$ with $\deg(f) = p$ prime. Prove that if f(x) is irreducible in F[x] and reducible in K[x], then p divides [K : F].
- 10. Let K be a splitting field of the polynomial $x^8 2 \in \mathbb{Q}[x]$. Exhibit (with proof) all intermediate fields between $F = \mathbb{Q}(i, \sqrt{2})$ and K.