Algebra Preliminary Examination

August 2017
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi(1)=1$.
- This exam has two pages.

1. Let R be a ring.
(a) Prove or disprove: If the polynomial ring $R[x]$ is a PID, then R is a field.
(b) Prove or disprove: If R is a field, then the polynomial ring $R[x, y]$ is a Euclidean domain.
2. Let S be a multiplicatively closed subset of a ring R. Define the saturation of S to be the set $\bar{S}=\{v \in R: v$ divides s for some $s \in S\}$. Prove that \bar{S} is multiplicatively closed and that there exists a ring isomorphism $S^{-1} R \simeq \bar{S}^{-1} R$.
3. Let R be an integral domain and let M be an R-module such that $\operatorname{Hom}_{R}(M, R / I)=0$ for all nonzero ideals $I \leq R$. Prove that $\operatorname{Hom}_{R}(M, R)=0$.
4. Recall that an R-module M is called divisible if for every nonzero $r \in R$, one has the equality $r M=M$. Let R be a PID and let Q be an R-module. Prove that Q is divisible if and only if it is an injective R-module.
5. Consider the \mathbb{R}-vector space of all differentiable real-valued functions of a single variable and let V be the subspace spanned by the ordered basis $B=\{t \sin (t), t \cos (t), \sin (t), \cos (t)\}$. Let $\Delta: V \rightarrow V$ be the usual differential operator given by $\Delta(\varphi(t))=\varphi^{\prime}(t)$.
(a) Find the matrix A of the operator Δ relative to the basis B.
(b) Find the rational canonical form (over \mathbb{R}) of the matrix A.
(c) Find the Jordan canonical form (over \mathbb{C}) of A.
6. Let V be an n-dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear transformation.
(a) Prove that $\operatorname{ker}\left(T^{n}\right)=\operatorname{ker}\left(T^{n+k}\right)$ and $\operatorname{Im}\left(T^{n}\right)=\operatorname{Im}\left(T^{n+k}\right)$ for all $k \geq 0$.
(b) Prove that $V=\operatorname{ker}\left(T^{n}\right) \oplus \operatorname{Im}\left(T^{n}\right)$.
7. Prove that if σ, τ are elements of order 2,3 (resp.) in A_{4}, then $\langle\sigma, \tau\rangle=A_{4}$.
8. Let G be a group and recall that centralizer and normalizer of any subset $P \subseteq G$ are the sets $C_{G}(P)=\{g \in G: g p=p g$ for all $p \in P\}$ and $N_{G}(P)=\left\{g \in G: g P g^{-1}=P\right\}$ respectively. If G is a group of order $660=2^{2} \cdot 3 \cdot 5 \cdot 11$ and P is a Sylow 11-subgroup such that $C_{G}(P)=P$, determine the cardinality $\left|N_{G}(P)\right|$ of the normalizer of P in G.
9. Let $F \subseteq K$ be an extension of fields such that $[K: F]<\infty$ and let $f(x) \in F[x]$ with $\operatorname{deg}(f)=p$ prime. Prove that if $f(x)$ is irreducible in $F[x]$ and reducible in $K[x]$, then p divides $[K: F]$.
10. Let K be a splitting field of the polynomial $x^{8}-2 \in \mathbb{Q}[x]$. Exhibit (with proof) all intermediate fields between $F=\mathbb{Q}(i, \sqrt{2})$ and K.
