Algebra Preliminary Examination

22 January 2021

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\phi: R \rightarrow S$ is a ring homomorphism, we also assume $\phi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra

1. Let $R=\mathbb{Z}[X, Y]$ and the ideal $I=\left(5, X^{2}+2\right)$ in R.
(a) Prove that I is a prime ideal of R and that R / I is a PID.
(b) Give an explicit example of a maximal ideal of R that contains I. (Give a set of generators for such an ideal.)
2. Prove that $\frac{\mathbb{Q}[X]}{(X)} \otimes_{\mathbb{Q}[X]} \frac{\mathbb{Q}[X]}{\left(X^{2}+1\right)}=(0)$.
3. Let R be a commutative ring, I an ideal of R, and M an R-module. Let

$$
\left(0:_{M} I\right)=\{x \in M \mid i x=0 \text { for all } i \in I\} .
$$

Prove that $\left(0:_{M} I\right)$ is a submodule of M and we have an isomorphism of R-modules

$$
\operatorname{Hom}_{R}(R / I, M) \cong\left(0:_{M} I\right)
$$

4. Let R be a commutative ring and let N be a submodule of an R-module M. Assume that M is finitely generated and M / N is a projective R-module. Prove that N is finitely generated.
5. Let G be a \mathbb{Z}-module with generators x, y, z subject to the relations $x+2 y+5 z=0$ and $3 x+3 y+9 z=0$. Find the the elementary divisors of the \mathbb{Z}-module G.
6. Let $R=\mathbb{Z}[i \sqrt{5}]$.
(a) Show that 3 is an irreducible element of R.
(b) Prove that the elements 6 and $2+2 i \sqrt{5}$ do not have a greatest common divisor.

B. Homological Algebra

1. Let K be a field and $R=K[x] /\left(x^{2}\right)$. For each integer $i \geq 0$, compute
(a) $\operatorname{Ext}_{R}^{i}(R, R /(x))$
(b) $\operatorname{Ext}_{R}^{i}(R /(x), R)$
(c) $\operatorname{Ext}_{R}^{i}(R /(x), R /(x))$.
2. Let $R=k[x, y]$ where k is a field, and let $I=(x, y) R$.
(a) Show that

$$
0 \rightarrow R \xrightarrow{\phi} R \oplus R \xrightarrow{\psi} R \rightarrow k \rightarrow 0
$$

where $\phi(a)=(-y a, x a), \psi(a, b)=x a+y b$ for $a, b \in R$ is a projective resolution of the R-module $k \cong R / I$.
(b) Compute $\operatorname{Tor}_{i}^{R}(I, k)$ for all $i \geq 0$.
(c) Show I that is not a flat R-module.
3. Let R be a commutative ring and let $0 \rightarrow K \rightarrow P \rightarrow A \rightarrow 0$ be a short exact sequence of R-modules with P projective. Assume that A is not projective. Prove that

$$
\operatorname{pd}_{R} A=\operatorname{pd}_{R} K+1
$$

4. Let R be a commutative ring and let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be a short exact sequence of R-modules. Assume that $\underline{x}=x_{1}, \ldots, x_{n}$ is a sequence that is both A-regular and C-regular. Prove that \underline{x} is B-regular, too.

