Algebra Preliminary Examination January 2018

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi : R \to S$ is a ring homomorphism, then $\varphi(1) = 1$.
- This exam has two pages.
- 1. Are the quotient rings $\mathbb{Z}[x, y]/(x^2 y)$ and $\mathbb{Z}[x, y]/(x^2 y^2)$ isomorphic? Justify your answer.
- 2. Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$.
 - (a) Prove that $gcd(6, 2 + 2\sqrt{-5})$ is nonexistent in R.
 - (b) Is R a Euclidean domain? Justify your answer.
- 3. Is the polynomial $f(x, y) = xy^2 + x^2y + 2xy + y + x + 1$ irreducible in $\mathbb{Z}[x, y]$? Justify your answer.
- 4. Let G be a free Z-module of finite rank and let H be a submodule of G. Prove that the quotient module G/H is finite if and only if $\operatorname{rank}(H) = \operatorname{rank}(G)$.
- 5. Let R be a ring.
 - (a) Suppose that $R = I \oplus J$ is the internal direct sum of ideals $I, J \subseteq R$. Prove that I is principally generated by some idempotent element $e \in I$.
 - (b) Assume now that R is an integral domain. Prove that every R-module is projective if and only if R is a field.
- 6. Prove or disprove the following statements. Feel free to use the usual calculus for tensor products where appropriate.
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as \mathbb{Q} -vector spaces.
 - (b) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are isomorphic as \mathbb{R} -vector spaces.

7. Recall that $J_k(\lambda)$ is the $k \times k$ Jordan block with eigenvalue λ . Let $V = \mathbb{Q}^8$ and let $T: V \to V$ be the linear transformation represented by the 8×8 matrix A given by.

$$A = \begin{pmatrix} J_3(1) & & 0 \\ & J_2(1) & & \\ & & J_2(-1) & \\ 0 & & & J_1(-1) \end{pmatrix}$$

- (a) Is the matrix A diagonalizable?
- (b) Recall that V^T is the the \mathbb{Q} -vector space V endowed with the $\mathbb{Q}[x]$ -module action given by $x \cdot \mathbf{v} = T(\mathbf{v})$. Find the invariant factor direct sum decomposition of the $\mathbb{Q}[x]$ -module V^T .
- (c) Find the minimal polynomial $m_A(x) \in \mathbb{Q}[x]$ of the matrix A.
- (d) Find the characteristic polynomial $\chi_A(x) \in \mathbb{Q}[x]$ of the matrix A.
- (e) Find the rational canonical form for the matrix A.
- 8. Recall that if V is a vector space, then $\operatorname{Aut}(V)$ is the set of all invertible linear transformations $V \to V$. Let p be a prime and let V be a finite dimensional vector space over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Prove that if G is a p-subgroup of $\operatorname{Aut}(V)$, then there exists a nonzero vector $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{v}$ for all linear transformations $T \in G$. **Hint:** Use the Fixed Point Theorem for p-group actions.
- 9. Classify all groups of order $1225 = 5^2 \cdot 7^2$.
- 10. Let $\omega \in \mathbb{C}$ be a primitive 5th root of unity.
 - (a) Compute the Galois group of $\mathbb{Q}(\omega)$ over \mathbb{Q} .
 - (b) Exhibit (with proof) the complete lattice of subfields of $\mathbb{Q}(\omega)$.