Algebra Preliminary Examination

January 2018
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi(1)=1$.
- This exam has two pages.

1. Are the quotient rings $\mathbb{Z}[x, y] /\left(x^{2}-y\right)$ and $\mathbb{Z}[x, y] /\left(x^{2}-y^{2}\right)$ isomorphic? Justify your answer.
2. Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that $\operatorname{gcd}(6,2+2 \sqrt{-5})$ is nonexistent in R.
(b) Is R a Euclidean domain? Justify your answer.
3. Is the polynomial $f(x, y)=x y^{2}+x^{2} y+2 x y+y+x+1$ irreducible in $\mathbb{Z}[x, y]$? Justify your answer.
4. Let G be a free \mathbb{Z}-module of finite rank and let H be a submodule of G. Prove that the quotient module G / H is finite if and only if $\operatorname{rank}(H)=\operatorname{rank}(G)$.
5. Let R be a ring.
(a) Suppose that $R=I \oplus J$ is the internal direct sum of ideals I, $J \subseteq R$. Prove that I is principally generated by some idempotent element $e \in I$.
(b) Assume now that R is an integral domain. Prove that every R-module is projective if and only if R is a field.
6. Prove or disprove the following statements. Feel free to use the usual calculus for tensor products where appropriate.
(a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as \mathbb{Q}-vector spaces.
(b) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are isomorphic as \mathbb{R}-vector spaces.
7. Recall that $J_{k}(\lambda)$ is the $k \times k$ Jordan block with eigenvalue λ. Let $V=\mathbb{Q}^{8}$ and let $T: V \rightarrow V$ be the linear transformation represented by the the 8×8 matrix A given by.

$$
A=\left(\begin{array}{cccc}
J_{3}(1) & & & 0 \\
& J_{2}(1) & & \\
0 & & J_{2}(-1) & \\
0 & & & J_{1}(-1)
\end{array}\right)
$$

(a) Is the matrix A diagonalizable?
(b) Recall that V^{T} is the the \mathbb{Q}-vector space V endowed with the $\mathbb{Q}[x]$-module action given by $x \cdot \mathbf{v}=T(\mathbf{v})$. Find the invariant factor direct sum decomposition of the $\mathbb{Q}[x]$-module V^{T}.
(c) Find the minimal polynomial $m_{A}(x) \in \mathbb{Q}[x]$ of the matrix A.
(d) Find the characteristic polynomial $\chi_{A}(x) \in \mathbb{Q}[x]$ of the matrix A.
(e) Find the rational canonical form for the matrix A.
8. Recall that if V is a vector space, then $\operatorname{Aut}(V)$ is the set of all invertible linear transformations $V \rightarrow V$. Let p be a prime and let V be a finite dimensional vector space over $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Prove that if G is a p-subgroup of $\operatorname{Aut}(V)$, then there exists a nonzero vector $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{v}$ for all linear transformations $T \in G$. Hint: Use the Fixed Point Theorem for p-group actions.
9. Classify all groups of order $1225=5^{2} \cdot 7^{2}$.
10. Let $\omega \in \mathbb{C}$ be a primitive $5^{\text {th }}$ root of unity.
(a) Compute the Galois group of $\mathbb{Q}(\omega)$ over \mathbb{Q}.
(b) Exhibit (with proof) the complete lattice of subfields of $\mathbb{Q}(\omega)$.

