Algebra Preliminary Examination

January 2020
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- For this exam you have two options:
(i) Submit solutions to questions from part A and from part B .
(ii) Submit solutions to questions from part A and from part C.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "commutative ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Let $R=\mathbb{Z}[x]$ be the ring of polynomials with integer coefficients and let I be the 2 -generated ideal ($2, x^{3}+1$). Prove or disprove each statement.
(a) I is a prime ideal of R.
(b) I is a maximal ideal of R
2. Let R be the subring $\mathbb{Z}[2 i]=\{a+2 b i: a, b \in \mathbb{Z}\}$ of the ring $\mathbb{Z}[i]$ of Gaussian integers.
(a) Prove that the elements 2 and $2 i$ are irreducible in R.
(b) Prove that $\mathbb{Z}[2 i]$ is not a UFD.
3. Consider the short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of R-modules. Suppose that N is a projective R-module. Prove that M is projective if and only if L is projective.
4. Let R be an integral domain such that every one of its R-modules is free. Prove that R is a PID.
5. Let W, X be subspaces of the F-vector space V. Prove that if $V=W+X$ and $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(X)$, then $V=W \oplus X$.
6. Let V be an n-dimensional vector space over the field \mathbb{Q} of rational numbers. and let $T \in \operatorname{End}_{\mathbb{Q}}(V)$ be a linear transformation.
(a) Prove that if T satisfies $T^{2}=T$, then it is diagonalizable.
(b) Up to similarity, how many such \mathbb{Q}-endomorphisms of V are there? Justify your answer.

B. Groups, Fields, and Galois Theory (option 1)

1. Consider the group S_{4} of all permutations on the set $\{1,2,3,4\}$ and let A_{4} be the alternating group of all even permutations.
(a) Prove that A_{4} has no subgroup of order 6 .
(b) Prove that A_{4} is the only subgroup of S_{4} of order 12.
2. Classify all groups of order $175=5^{2} \cdot 7$.
3. Let $F \subseteq K$ be an extension of fields with $u \in K$ transcendental over F. Prove that every element of $F(u)-F$ is transcendental over F.
4. Give an example of a field tower $F \subseteq L \subseteq K$ such that $F \subseteq L$ and $L \subseteq K$ are normal extensions, but $F \subseteq K$ is not normal.

C. Homological Algebra (option 2)

1. Let A, B be two finitely generated \mathbb{Z}-modules. Prove that

$$
\operatorname{Tor}_{2}^{\mathbb{Z}}(A, B)=0
$$

2. Let R be a principal ideal domain and M and N finitely generated torsion R-modules. Prove that there exists an isomorphism of R-modules $\operatorname{Tor}_{1}^{R}(M, N) \cong M \otimes_{R} N$.
3. Let R be a commutative ring, M an R-module, $\underline{x}=x_{1}, \ldots, x_{n}$ an M-regular sequence. Denote $I=\left(x_{1}, \ldots, x_{n}\right) \subseteq R$. Assume that we have an exact sequence of R-modules

$$
N_{2} \rightarrow N_{1} \rightarrow N_{0} \rightarrow M \rightarrow 0
$$

Prove that the induced sequence

$$
N_{2} / I N_{2} \rightarrow N_{1} / I N_{1} \rightarrow N_{0} / I N_{0} \rightarrow M / I M \rightarrow 0
$$

is exact.
4. Let I, J be ideals in a commutative ring R. Prove that we have the following isomorphisms of R-modules:
(a) $\operatorname{Tor}_{n}^{R}(R / J, R / I) \cong \operatorname{Tor}_{n-2}^{R}(J, I)$ for $n>2$.
(b) $\operatorname{Tor}_{2}^{R}(R / J, R / I) \cong \operatorname{Ker}\left(J \otimes_{R} I \rightarrow J I\right)$.
(c) $\operatorname{Tor}_{1}^{R}(R / J, R / I) \cong(J \cap I) /(J I)$.

