Algebra Preliminary Examination

May 2017
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital module". If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\varphi(1)=1$.
- This exam has two pages.

1. Is the ideal $\left(x^{2}+1,11\right)$ maximal in the polynomial ring $\mathbb{Z}[x]$? Justify your answer.
2. Prove that the subring $\mathbb{Q}\left[x^{2}, x^{3}\right]$ consisting of all polynomials in $\mathbb{Q}[x]$ with zero linear term is not a UFD.
3. Prove that a finitely generated projective module M over a PID R is free.
4. Let V, W be finite dimensional vector spaces over a field F. If $\operatorname{dim}(V)=m$ and $\operatorname{dim}(W)=n$, what is $\operatorname{dim}\left(V \otimes_{F} W\right)$? Justify your answer. Feel free to use the usual calculus of tensor products.
5. Consider the matrix $A \in \mathcal{M}_{3}(\mathbb{Q})$ given by

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(a) Find the rational canonical form of A.
(b) Is A diagonalizable? Justify your answer.
6. Let I be an ideal of the ring R and let M be an R-module generated by n elements. Prove that if $r \in R$ satisfies $r M \subseteq I M$, then there exists an element $y \in I$ such that $\left(r^{n}+y\right) M=0$. Hint: Determinants.
7. Let $G=D_{8}$ be the dihedral group on the vertices of a square and let V_{4} denote the Klein 4-group.
(a) Prove that $G \simeq V_{4} \rtimes_{\theta} \mathbb{Z} / 2 \mathbb{Z}$ for some group homomorphism $\theta: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}\left(V_{4}\right)$.
(b) Is it possible that the map $\theta: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}\left(V_{4}\right)$ from part (a) is the trivial homomorphism? Justify your answer.
8. Prove that a group of order 96 must have a normal subgroup of order 16 or 32 .
9. If $u=\sqrt{2}+\sqrt[3]{5}$, prove that $\mathbb{Q}(u)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ and find the degree of the minimal polynomial $m_{u, \mathbb{Q}}(x) \in \mathbb{Q}[x]$.
10. Let $\varphi_{p}(x)=1+x+\ldots+x^{p-1}$ where p is an odd prime and let K be the splitting field of φ_{p} over \mathbb{Q}. Prove that there exists a unique field L between \mathbb{Q} and K such that $[K: L]=2$.

