Algebra Preliminary Examination

August 2007

- Begin each question on a new sheet of paper.
- In answering any part of a question, you may assume the results in previous parts, even IF You have not solved them.
All rings have identity and all modules are unitary.

1. Let G be a group and H a subgroup of G (not necessarily normal subgroup) with $[G: H]=n$. Prove that for every $g \in G$ we have $g^{n!} \in H$.
2. For a group G, we denote $Z(G)=\{x \in G \mid x y=y x$ for all $y \in G\}$.
(a) Prove that $Z(G)$ is a normal subgroup of G.
(b) Let G be a group with $G / Z(G)$ cyclic. Prove that G is abelian.
(c) Let G be a non-abelian group with p^{3} elements, where $p>2$ is a prime number. Prove that $x \rightarrow x^{p}$ defines a group homomorphism from G to $Z(G)$.
3. Let G be a finite group. For an element $g \in G$, define the centralizer $C(g)$ of g to be

$$
C(g)=\{h \in G \mid g h=h g\} .
$$

(a) If g and g^{\prime} are conjugate to each other (i.e. $g=h g^{\prime} h^{-1}$ for some $h \in G$), prove that $C(g)$ and $C\left(g^{\prime}\right)$ are subgroups of G with the same number of elements.
(b) Let $g_{1}, g_{2}, \ldots, g_{l}$ be a complete set of representatives from the conjugacy classes of G (l is called the class number of G). Prove that

$$
\frac{1}{\left|C\left(g_{1}\right)\right|}+\frac{1}{\left|C\left(g_{2}\right)\right|}+\cdots+\frac{1}{\left|C\left(g_{l}\right)\right|}=1 .
$$

(c) Find all the finite groups with the class number $l=3$.
4. Let R be a commutative ring and I an ideal of R. Show that if R / I is a projective R-module, then I is a principal ideal generated by an idempotent element (i.e. an element e such that $e^{2}=e$).
5. Let R be commutative ring and $J(R)$ the Jacobson radical of R. Show that $x \in J(R)$ if and only if $1+r x$ is a unit in R for all $r \in R$. (We define the Jacobson radical to be the intersection of all maximal ideals of R).
6. Let F be a field and $E=F(c)$ a finite separable field extension of F. Let $K \supset E$ be a splitting field of the minimal polynomial of c over F. Prove that for every prime p dividing the degree $[K: F]$ there exists a field L between F and K such that $[K: L]=p$ and $K=L(c)$.
7. (a) Prove that the ring $R=\mathbb{Z}[\sqrt{-2}]$ is Euclidean.
(b) Show that $R /(3+2 \sqrt{-2})$ is a field. What is the characteristic of this field?
8. Find the Galois group of the extension $\mathbb{Q} \subset K$, where K is the splitting field over \mathbb{Q} of $X^{4}-3 X^{2}+4$.
9. Let $n>2$ be an integer. Prove that in $\mathbb{Z}[\sqrt{-n}], 2$ is irreducible but not a prime. Is the same statement true for $n \in\{1,2\}$?
10. Let K be an algebraically closed field. Prove that K has infinitely many elements.

