Algebra Preliminary Examination August 2018

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- For this exam, you have **two options**:
 - Option 1: Submit solutions to questions from Part A and from Part B.
 - Option 2: Submit solutions to questions from Part A and from Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\phi: R \to S$ is a ring homomorphism, we also assume $\phi(1_R) = 1_S$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

- 1. Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z} . How many elements does the ring $\mathbb{Z}[X]/(X^2 3, 2X + 4)$ have? Justify your answer.
- **2.** Let R be a commutative ring and I, J ideals of R. If R/I and R/J are noetherian rings, prove that $R/(I \cap J)$ is a noetherian ring.
- **3.** Let R be a commutative ring and M an R-module such that
 - (a) $M \neq (0)$ and
 - (b) (0) and M are the only R-submodules of M.

Prove that there exists a maximal ideal \mathfrak{m} of R such that M is isomorphic (as an R-module) to R/\mathfrak{m} .

- 4. (a) Prove that the ring $R = \mathbb{Z}[\sqrt{-2}]$ is Euclidean.
 - (b) Show that $R/(3+2\sqrt{-2})$ is a field. What is the characteristic of this field?
- 5. Let R be commutative ring and J(R) the Jacobson radical of R. Show that $x \in J(R)$ if and only if 1 + rx is a unit in R for all $r \in R$. (Recall that the Jacobson radical is the intersection of all maximal ideals of R).
- 6. Let A be a Z-module with generators x, y, z subject to the relations x + 2y + 5z = 0 and 3x + 3y + 9z = 0. Find the elementary divisors of the Z-module A.

B. Groups, Fields, and Galois Theory (option 1)

- 1. Let H be a finite subgroup of a group G and let $\mathcal{L}_H = \{aH : a \in G\}$ be the set of left cosets of H in G. Consider the left regular action $H \times \mathcal{L}_H \to \mathcal{L}_H$ given by $h \cdot aH = haH$. Recall that the normalizer of H in G is the subgroup $N_G(H) = \{g \in G : gHg^{-1} = H\}$.
 - (a) Prove that $\operatorname{Fix}(\mathcal{L}_H) = N_G(H)/H$ and conclude that $|\operatorname{Fix}(\mathcal{L}_H)| = [N_G(H):H]$.
 - (b) Prove that if G is a finite p-group and H a proper subgroup, then H is properly contained in $N_G(H)$.
- **2.** Prove that a group of order $300 = 2^2 \cdot 3 \cdot 5^2$ is not simple.
- **3.** Let $f(x) \in F[x]$ with splitting field K over F. Define the *multiplicity* of the root $u \in K$ to be the integer n such that $f(x) = (x-u)^n g(x)$ where $(x-u) \nmid g(x)$ in K[x]. Prove that if f is irreducible over F, then any two of its roots $u, v \in K$ have the same multiplicity.
- **4.** Let K be the splitting field of the polynomial $x^4 2x^2 2 \in \mathbb{Q}[x]$.
 - (a) Determine the cardinality of the galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (b) Find an automorphism $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ of order 4.

C. Homological Algebra (option 2)

- 1. Let R be a commutative local noetherian ring and P a finitely generated projective R-module. Prove that P is a free R-module.
- **2.** Let I, J be ideals in a commutative ring R such that I + J = R. Prove that

$$\operatorname{Tor}_{1}^{R}(R/I, R/J) = 0.$$

- **3.** Let R be a commutative ring and $0 \to A \to B \to C \to 0$ a short exact sequence of *R*-modules. Assume that $\operatorname{Ext}^{1}_{R}(C, A) = 0$. Prove that $B \cong A \oplus C$ (isomorphism of *R*-modules).
- 4. Let R be a commutative ring, M, N be R-modules, and let $I = \operatorname{Ann}_R N = \{x \in R \mid xN = 0\}.$
 - (a) Assume that I contains a regular element on M. Prove that $\operatorname{Hom}_R(N, M) = 0$.
 - (b) Assume that x is a regular element on M with $x \in I$. Prove that

$$\operatorname{Hom}_R(N, M/xM) \cong \operatorname{Ext}^1_R(N, M).$$