Algebra Preliminary Examination

August 2018
INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- For this exam, you have two options:
- Option 1: Submit solutions to questions from Part A and from Part B.
- Option 2: Submit solutions to questions from Part A and from Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\phi: R \rightarrow S$ is a ring homomorphism, we also assume $\phi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z}. How many elements does the ring $\mathbb{Z}[X] /\left(X^{2}-3,2 X+4\right)$ have? Justify your answer.
2. Let R be a commutative ring and I, J ideals of R. If R / I and R / J are noetherian rings, prove that $R /(I \cap J)$ is a noetherian ring.
3. Let R be a commutative ring and M an R-module such that
(a) $M \neq(0)$ and
(b) (0) and M are the only R-submodules of M.

Prove that there exists a maximal ideal \mathfrak{m} of R such that M is isomorphic (as an R module) to R / \mathfrak{m}.
4. (a) Prove that the ring $R=\mathbb{Z}[\sqrt{-2}]$ is Euclidean.
(b) Show that $R /(3+2 \sqrt{-2})$ is a field. What is the characteristic of this field?
5. Let R be commutative ring and $J(R)$ the Jacobson radical of R. Show that $x \in J(R)$ if and only if $1+r x$ is a unit in R for all $r \in R$. (Recall that the Jacobson radical is the intersection of all maximal ideals of R).
6. Let A be a \mathbb{Z}-module with generators x, y, z subject to the relations $x+2 y+5 z=0$ and $3 x+3 y+9 z=0$. Find the elementary divisors of the \mathbb{Z}-module A.

B. Groups, Fields, and Galois Theory (option 1)

1. Let H be a finite subgroup of a group G and let $\mathcal{L}_{H}=\{a H: a \in G\}$ be the set of left cosets of H in G. Consider the left regular action $H \times \mathcal{L}_{H} \rightarrow \mathcal{L}_{H}$ given by $h \cdot a H=h a H$. Recall that the normalizer of H in G is the subgroup $N_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\}$.
(a) Prove that $\operatorname{Fix}\left(\mathcal{L}_{H}\right)=N_{G}(H) / H$ and conclude that $\left|\operatorname{Fix}\left(\mathcal{L}_{H}\right)\right|=\left[N_{G}(H): H\right]$.
(b) Prove that if G is a finite p-group and H a proper subgroup, then H is properly contained in $N_{G}(H)$.
2. Prove that a group of order $300=2^{2} \cdot 3 \cdot 5^{2}$ is not simple.
3. Let $f(x) \in F[x]$ with splitting field K over F. Define the multiplicity of the root $u \in K$ to be the integer n such that $f(x)=(x-u)^{n} g(x)$ where $(x-u) \nmid g(x)$ in $K[x]$. Prove that if f is irreducible over F, then any two of its roots $u, v \in K$ have the same multiplicity.
4. Let K be the splitting field of the polynomial $x^{4}-2 x^{2}-2 \in \mathbb{Q}[x]$.
(a) Determine the cardinality of the galois group $\operatorname{Gal}(K / \mathbb{Q})$.
(b) Find an automorphism $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ of order 4.

C. Homological Algebra (option 2)

1. Let R be a commutative local noetherian ring and P a finitely generated projective R module. Prove that P is a free R-module.
2. Let I, J be ideals in a commutative ring R such that $I+J=R$. Prove that

$$
\operatorname{Tor}_{1}^{R}(R / I, R / J)=0
$$

3. Let R be a commutative ring and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of R-modules. Assume that $\operatorname{Ext}_{R}^{1}(C, A)=0$. Prove that $B \cong A \oplus C$ (isomorphism of R-modules).
4. Let R be a commutative ring, M, N be R-modules, and let $I=\operatorname{Ann}_{R} N=\{x \in R \mid$ $x N=0\}$.
(a) Assume that I contains a regular element on M. Prove that $\operatorname{Hom}_{R}(N, M)=0$.
(b) Assume that x is a regular element on M with $x \in I$. Prove that

$$
\operatorname{Hom}_{R}(N, M / x M) \cong \operatorname{Ext}_{R}^{1}(N, M)
$$

