Algebra Preliminary Examination

February 2015

- In answering any part of a question, you may assume the results in previous PARTS

All rings have identity and all modules are unitary (unital).

1. Classify all groups of order 175 . (Hint: first prove that any such group must be abelian.)
2. Let H be a (not necessarily normal) subgroup of the group G. Prove that if $[G: H]=n$, then $g^{n!} \in H$ for all $g \in G$.
3. Prove that the polynomial $X^{5}-\sqrt[3]{2}$ is irreducible over the field $\mathbb{Q}(\sqrt[3]{2})$.
4. Let K be the splitting field of some irreducible polynomial $f(X) \in \mathbb{Q}[X]$. Prove that if $[K: \mathbb{Q}]=102$, then there exists a field E with $\mathbb{Q} \subseteq E \subseteq K$ such that $\mathbb{Q} \subseteq E$ is a normal extension and $[E: \mathbb{Q}]=6$.
5. Let A be a commutative ring, I an ideal of A, and $S \subseteq A$ a multiplicatively closed subset with $1 \in S$. Let $\phi: A \rightarrow S^{-1} A$ be the canonical ring homomorphism defined by $\phi(a)=a / 1$ for all $a \in A$. For each $y \in A$, denote

$$
(I: y)=\{x \in A \mid x y \in I\}
$$

Prove that

$$
\phi^{-1}\left(\phi(I) S^{-1} A\right)=\bigcup_{s \in S}(I: s) .
$$

6. Let G be a finite abelian group with identity e. Prove that there exists an element $x \in G \backslash\{e\}$ such that ord $y \mid$ ord x for all $y \in G \backslash\{e\}$.
7. Let k be a field with char $k \neq 2, V$ a k-vector space, and $f \in \operatorname{End}_{k}(V)$ such that $f \circ f=1_{V}$. Prove that

$$
V_{1}:=\{x+f(x) \mid x \in V\} \text { and } V_{2}:=\{x-f(x) \mid x \in V\}
$$

are subspaces of V and $V=V_{1} \oplus V_{2}$.
8. Prove that the polynomial $X^{2} Y+X^{2}+Y$ is irreducible in $\mathbb{Q}[X, Y]$.
9. Let R be a commutative ring and M an R-module. We say that M is simple if the following two conditions are satisfied:
(a) $M \neq(0)$
(b) (0) and M are the only submodules of M.

Prove that M is simple if and only if there exists a maximal ideal \mathfrak{m} of R such that M is isomorphic (as an R-module) to R / \mathfrak{m}.
10. Let I, J be ideals in a commutative ring R. Prove that there exists an isomorphism of R-modules

$$
R / I \otimes_{R} R / J \cong R /(I+J)
$$

