Algebra Preliminary Examination February 2015

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS

All rings have identity and all modules are unitary (unital).

- 1. Classify all groups of order 175. (Hint: first prove that any such group must be abelian.)
- **2.** Let *H* be a (not necessarily normal) subgroup of the group *G*. Prove that if [G:H] = n, then $g^{n!} \in H$ for all $g \in G$.
- **3.** Prove that the polynomial $X^5 \sqrt[3]{2}$ is irreducible over the field $\mathbb{Q}(\sqrt[3]{2})$.
- 4. Let K be the splitting field of some irreducible polynomial $f(X) \in \mathbb{Q}[X]$. Prove that if $[K : \mathbb{Q}] = 102$, then there exists a field E with $\mathbb{Q} \subseteq E \subseteq K$ such that $\mathbb{Q} \subseteq E$ is a normal extension and $[E : \mathbb{Q}] = 6$.
- 5. Let A be a commutative ring, I an ideal of A, and $S \subseteq A$ a multiplicatively closed subset with $1 \in S$. Let $\phi : A \to S^{-1}A$ be the canonical ring homomorphism defined by $\phi(a) = a/1$ for all $a \in A$. For each $y \in A$, denote

$$(I:y) = \{x \in A \mid xy \in I\}.$$

Prove that

$$\phi^{-1}(\phi(I)S^{-1}A) = \bigcup_{s \in S} (I:s).$$

- **6.** Let G be a finite abelian group with identity e. Prove that there exists an element $x \in G \setminus \{e\}$ such that $\operatorname{ord} y \mid \operatorname{ord} x$ for all $y \in G \setminus \{e\}$.
- 7. Let k be a field with char $k \neq 2$, V a k-vector space, and $f \in \text{End}_k(V)$ such that $f \circ f = 1_V$. Prove that

 $V_1 := \{x + f(x) \mid x \in V\}$ and $V_2 := \{x - f(x) \mid x \in V\}$

are subspaces of V and $V = V_1 \oplus V_2$.

- 8. Prove that the polynomial $X^2Y + X^2 + Y$ is irreducible in $\mathbb{Q}[X, Y]$.
- **9.** Let R be a commutative ring and M an R-module. We say that M is simple if the following two conditions are satisfied:
 - (a) $M \neq (0)$
 - (b) (0) and M are the only submodules of M.

Prove that M is simple if and only if there exists a maximal ideal \mathfrak{m} of R such that M is isomorphic (as an R-module) to R/\mathfrak{m} .

10. Let I, J be ideals in a commutative ring R. Prove that there exists an isomorphism of R-modules

$$R/I \otimes_R R/J \cong R/(I+J).$$