Algebra Preliminary Examination January 2008

• BEGIN EACH QUESTION ON A NEW SHEET OF PAPER.

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVE NOT SOLVED THEM.

All rings have identity and all modules are unitary.

- **1.** Let *R* be a commutative ring and *I*, *J*, *K* ideals of *R*. Assume that $K \subseteq I \cup J$. Prove that either $K \subseteq I$ or $K \subseteq J$.
- **2.** Let *R* be a commutative ring and let *I* be an ideal of the polynomial ring R[X]. Suppose that for some monic polynomial $f \in I$, deg $(f) \leq deg(g)$ for all nonzero $g \in I$. Prove that *I* is a principal ideal.
- **3.** (a) Let $(\mathbb{Q}, +)$ be the abelian additive group of rational numbers. Prove that every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.
 - (b) Prove that $(\mathbb{Q}, +)$ is not a finitely generated group.
- **4.** Let *a* be an element of a commutative ring *R* such that *a* is idempotent, i.e., $a^2 = a$.
 - (a) Prove that the principal ideal *aR* is a ring with identity element *a*.
 - (b) Let b = 1 a. Prove that *b* is an idempotent and establish a ring isomorphism

$$R\cong (aR)\times (bR).$$

- 5. Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z} . How many elements does the ring $\mathbb{Z}[X]/(X^2 3, 2X + 4)$ have? Justify your answer.
- **6.** Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z} . Is every ideal of $\mathbb{Z}[X]/(X^2-1)$ principal? Justify your answer.
- 7. Let *G* be a finite group of order *n* and let *d* be an integer relatively prime to *n*.
 - (a) Prove that there exists an integer *k* such that every $x \in G$ satisfies $x^{kd} = x$.
 - (b) Show that for every $y \in G$ there exists a unique $x \in G$ such that $x^d = y$.
- **8.** (a) Let p, q be two prime numbers such that p < q and p does not divide (q 1). Let G be a finite group with pq elements. Prove that G is cyclic.
 - (b) Let *G* be a group with $595 = 5 \times 7 \times 17$ elements. Prove that *G* has a **normal** subgroup with 17 elements.
- **9.** Let *R* be an integral domain of characteristic p > 0. Let $F : R \to R$ be the function given by $F(a) = a^p$ and for n > 0 denote $F^n = F \circ F \circ \ldots \circ F$ (*n* times). Prove that :
 - (a) *p* is a prime number;
 - (b) *F* is a ring homomorphism;
 - (c) For n > 0, the set $\{a \in R \mid F^n(a) = a\}$ is a finite **field**;
 - (d) If *R* is finite, then *R* is a field;
 - (e) If *R* is finite, then *F* is bijective;
 - (f) If *R* is finite, then there exists a positive integer *n* such that $F^n : R \to R$ is the identity.
- **10.** Let \mathbb{Q} be the field of rational numbers and let $\mathbb{Q} \subseteq F$ be a field extension. Let $\sigma : F \to F$ be a nonzero ring homomorphism.
 - (a) Prove that if *F* is algebraic over \mathbb{Q} , then σ is an isomorphism.
 - (b) Show that the conclusion might fail if *F* is not algebraic over Q.