Algebra Preliminary Examination

January 2008

- Begin each question on a new sheet of paper.
- In ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVE NOT SOLVED THEM.

All rings have identity and all modules are unitary.

1. Let R be a commutative ring and I, J, K ideals of R. Assume that $K \subseteq I \cup J$. Prove that either $K \subseteq I$ or $K \subseteq J$.
2. Let R be a commutative ring and let I be an ideal of the polynomial ring $R[X]$. Suppose that for some monic polynomial $f \in I, \operatorname{deg}(f) \leq \operatorname{deg}(g)$ for all nonzero $g \in I$. Prove that I is a principal ideal.
3. (a) Let $(\mathbb{Q},+)$ be the abelian additive group of rational numbers. Prove that every finitely generated subgroup of $(Q,+)$ is cyclic.
(b) Prove that $(\mathbb{Q},+)$ is not a finitely generated group.
4. Let a be an element of a commutative ring R such that a is idempotent, i.e., $a^{2}=a$.
(a) Prove that the principal ideal $a R$ is a ring with identity element a.
(b) Let $b=1-a$. Prove that b is an idempotent and establish a ring isomorphism

$$
R \cong(a R) \times(b R)
$$

5. Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z}. How many elements does the ring $\mathbb{Z}[X] /\left(X^{2}-3,2 X+4\right)$ have? Justify your answer.
6. Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z}. Is every ideal of $\mathbb{Z}[X] /\left(X^{2}-1\right)$ principal? Justify your answer.
7. Let G be a finite group of order n and let d be an integer relatively prime to n.
(a) Prove that there exists an integer k such that every $x \in G$ satisfies $x^{k d}=x$.
(b) Show that for every $y \in G$ there exists a unique $x \in G$ such that $x^{d}=y$.
8. (a) Let p, q be two prime numbers such that $p<q$ and p does not divide $(q-1)$. Let G be a finite group with $p q$ elements. Prove that G is cyclic.
(b) Let G be a group with $595=5 \times 7 \times 17$ elements. Prove that G has a normal subgroup with 17 elements.
9. Let R be an integral domain of characteristic $p>0$. Let $F: R \rightarrow R$ be the function given by $F(a)=a^{p}$ and for $n>0$ denote $F^{n}=F \circ F \circ \ldots \circ F$ (n times). Prove that:
(a) p is a prime number;
(b) F is a ring homomorphism;
(c) For $n>0$, the set $\left\{a \in R \mid F^{n}(a)=a\right\}$ is a finite field;
(d) If R is finite, then R is a field;
(e) If R is finite, then F is bijective;
(f) If R is finite, then there exists a positive integer n such that $F^{n}: R \rightarrow R$ is the identity.
10. Let \mathbb{Q} be the field of rational numbers and let $\mathbb{Q} \subseteq F$ be a field extension. Let $\sigma: F \rightarrow F$ be a nonzero ring homomorphism.
(a) Prove that if F is algebraic over \mathbb{Q}, then σ is an isomorphism.
(b) Show that the conclusion might fail if F is not algebraic over \mathbb{Q}.
