Algebra Preliminary Examination

June 2015
Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- Submit solutions to questions from Part A and from either Part B or Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital module".
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. Prove or disprove: If R is a commutative ring, and I, J are ideals of R, then the set $\{i j \mid i \in I$ and $j \in J\}$ is an ideal of R.
2. Prove or disprove: every UFD is a PID.
3. Prove or disprove: If R is a commutative ring, and M is a finitely generated R-module, then every submodule $N \subseteq M$ is finitely generated over R.
4. Prove or disprove: the matrices $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 9 & 2 & 0 & 0 \\ 8 & 7 & 3 & 0 \\ 6 & 5 & 4 & 4\end{array}\right)$ and $\left(\begin{array}{cccc}4 & 0 & 0 & 0 \\ 7 & 3 & 0 & 0 \\ 8 & 6 & 0 & 0 \\ 4 & 11 & 5 & 1\end{array}\right)$ have the same rational canonical forms over \mathbb{Q}.
5. Assume that R is a PID, and let M, N be finitely generated R-modules. Let $\operatorname{Hom}_{R}(M, N)$ denote the set of R-module homomorphisms $M \rightarrow N$. Prove that $\operatorname{Hom}_{R}(M, N)$ is finitely generated over R.

PARTS B AND C ARE ON PAGE 2.

B. Groups, Fields, and Galois Theory (option 1)

1. Find a representative of each conjugacy class in S_{6}.
2. Let $f: G \rightarrow A$ be a homomorphism of groups such that A is abelian. Let $[G, G]$ be the commutator subgroup of G, and let $p: G \rightarrow G /[G, G]$ be the natural group epimorphism. Prove that there is a unique group homomorphism $f^{\prime}: G /[G, G] \rightarrow A$ such that $f=f^{\prime} \circ p$.
3. Let $f(x)=x^{4}-12 x^{2}+18 \in \mathbb{Q}[x]$.
(a) Find a splitting field K of $f(x)$ over \mathbb{Q} and determine $[K: \mathbb{Q}]$
(b) Prove that $\mathbb{Q} \subseteq K$ is a Galois extension with Galois group $\operatorname{Gal}(K: \mathbb{Q})$ isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$.
4. Prove that if the Galois group of a splitting field of a cubic polynomial over \mathbb{Q} is the cyclic group of order 3 then all of the roots of the cubic polynomial are real.
5. Let α and β be two complex numbers with minimal polynomials $f(x)$ and $g(x)$, respectively, over \mathbb{Q}. Prove that $f(x)$ is irreducible over $\mathbb{Q}(\beta)$ if and only if $g(x)$ is irreducible over $\mathbb{Q}(\alpha)$.

C. Homological Algebra (option 2)

1. Let R be a commutative ring and M an R-module. Assume that we have the exact sequences of R-modules $P \xrightarrow{\pi} M \rightarrow 0$ and $P^{\prime} \xrightarrow{\pi^{\prime}} M \rightarrow 0$ where P and P^{\prime} are projective R-modules. Prove that

$$
\operatorname{ker} \pi \oplus P^{\prime} \cong \operatorname{ker} \pi^{\prime} \oplus P
$$

2. Let I, J be ideals in a commutative ring R. Prove that

$$
\operatorname{Tor}_{1}^{R}(R / I, R / J) \cong \frac{I \cap J}{I J}
$$

3. Let R be a principal ideal domain and let $a, b \in R \backslash\{0\}$. Show that $\operatorname{Ext}_{R}^{1}(R / a R, R / b R)=$ 0 if and only if a and b are relatively prime.
4. Let R be a commutative ring, M, N be R-modules, and let $I=\operatorname{Ann}_{R} N=\{x \in R \mid$ $x N=0\}$.
(a) Assume that I contains a regular element on M. Prove that $\operatorname{Hom}_{R}(N, M)=0$.
(b) Assume that $x_{1}, x_{2}, \ldots, x_{n}$ is a regular sequence on M with $x_{1}, x_{2}, \ldots, x_{n} \in I$. Prove that

$$
\operatorname{Hom}_{R}\left(N, M /\left(x_{1}, \ldots, x_{n}\right) M\right) \cong \operatorname{Ext}_{R}^{n}(N, M)
$$

5. Let R be a commutative ring and let $0 \rightarrow K \rightarrow P \rightarrow A \rightarrow 0$ be a short exact sequence of R-modules with P projective. Assume that A is not projective. Prove that

$$
\operatorname{pd}_{R} A=\operatorname{pd}_{R} K+1
$$

