Algebra Preliminary Examination June 2010

• BEGIN EACH QUESTION ON A NEW SHEET OF PAPER.

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS

All rings have identity and all modules are unitary (unital).

- **1.** Let K be a field, $f \in K[X]$ a polynomial of degree n and L a splitting field of f. Prove that [L:K] divides n!.
- **2.** Let K be a field and let G be a finite subgroup of the multiplicative group $K^* = K \setminus \{0\}$. Prove that G must be cyclic.
- **3.** (a) Let G be a finite group and H a subgroup of G of index n. Assume that H does not contain any non-trivial normal subgroups of G. Prove that G is isomorphic to a subgroup of S_n .
 - (b) Prove that there is no simple group of order 216.
- 4. (a) Show that the splitting field of $X^4 + 4X^2 + 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$.
 - (b) Compute the Galois group of the polynomial $X^4 + 4X^2 + 2 \in \mathbb{Q}[X]$.
 - (c) Find all the subfields of $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$.
- 5. Let R be a commutative ring and let M, N be R-submodules of an R-module L. Prove that if M + N and $M \cap N$ are finitely generated, then so are M and N.
- **6.** Let A be a commutative ring and L a free A-module of rank n. Let $x_1, \ldots, x_n \in L$.
 - (a) Assume that x_1, \ldots, x_n generate L. Prove that x_1, \ldots, x_n is a basis of L.
 - (b) If x_1, \ldots, x_n are linearly independent, is it necessarily true that x_1, \ldots, x_n form a basis of L? If yes, give a proof. If no, give a counterexample.
- 7. (a) Let H be a finitely generated subgroup of the abelian group $(\mathbb{Q}, +)$. Prove that H is cyclic.
 - (b) Prove that the abelian group $(\mathbb{Q}, +)$ is not finitely generated.
- 8. Let R be an integral domain. Denote by Max(R) the set of all maximal ideals of R. For each $m \in Max(R)$ we denote by R_m the localization of R at the maximal ideal m. Note that each R_m is a subring of the fraction field of R. Prove that $R = \bigcap_{m \in Max(R)} R_m$.
- **9.** (a) Prove that the ring $R = \mathbb{Z}[X]/(2, X^2 + 1)$ has four elements.
 - (b) Prove that R is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

10. Let $R = \mathbb{Z}[\sqrt{-5}]$.

- (a) Prove that the ideal $I = (2, 1 + \sqrt{-5})$ is not principal.
- (b) Prove that the product of two non-principal ideals in R can be principal.