Algebra Preliminary Examination

June 2010

- Begin each question on a new sheet of paper.
- In answering any part of a question, you may assume the results in previous PARTS

All rings have identity and all modules are unitary (unital).

1. Let K be a field, $f \in K[X]$ a polynomial of degree n and L a splitting field of f. Prove that $[L: K]$ divides $n!$.
2. Let K be a field and let G be a finite subgroup of the multiplicative group $K^{*}=K \backslash\{0\}$. Prove that G must be cyclic.
3. (a) Let G be a finite group and H a subgroup of G of index n. Assume that H does not contain any non-trivial normal subgroups of G. Prove that G is isomorphic to a subgroup of S_{n}.
(b) Prove that there is no simple group of order 216.
4. (a) Show that the splitting field of $X^{4}+4 X^{2}+2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$.
(b) Compute the Galois group of the polynomial $X^{4}+4 X^{2}+2 \in \mathbb{Q}[X]$.
(c) Find all the subfields of $\mathbb{Q}(\sqrt{-2+\sqrt{2}})$.
5. Let R be a commutative ring and let M, N be R-submodules of an R-module L. Prove that if $M+N$ and $M \cap N$ are finitely generated, then so are M and N.
6. Let A be a commutative ring and L a free A-module of rank n. Let $x_{1}, \ldots, x_{n} \in L$.
(a) Assume that x_{1}, \ldots, x_{n} generate L. Prove that x_{1}, \ldots, x_{n} is a basis of L.
(b) If x_{1}, \ldots, x_{n} are linearly independent, is it necessarily true that x_{1}, \ldots, x_{n} form a basis of L ? If yes, give a proof. If no, give a counterexample.
7. (a) Let H be a finitely generated subgroup of the abelian group $(\mathbb{Q},+)$. Prove that H is cyclic.
(b) Prove that the abelian group $(\mathbb{Q},+)$ is not finitely generated.
8. Let R be an integral domain. Denote by $\operatorname{Max}(R)$ the set of all maximal ideals of R. For each $m \in \operatorname{Max}(R)$ we denote by R_{m} the localization of R at the maximal ideal m. Note that each R_{m} is a subring of the fraction field of R. Prove that $R=\bigcap_{m \in \operatorname{Max}(R)} R_{m}$.
9. (a) Prove that the ring $R=\mathbb{Z}[X] /\left(2, X^{2}+1\right)$ has four elements.
(b) Prove that R is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
10. Let $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that the ideal $I=(2,1+\sqrt{-5})$ is not principal.
(b) Prove that the product of two non-principal ideals in R can be principal.
