Algebra Preliminary Examination June 2014

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS

All rings have identity and all modules are unitary (unital).

- 1. Let G be a group with a normal subgroup N such that $G/N \simeq \mathbb{Z}$. Prove that for each positive integer m, there exists a normal subgroup $N(m) \trianglelefteq G$ such that $G/N(m) \simeq \mathbb{Z}/m\mathbb{Z}$.
- 2. Classify all groups of order 99.
- 3. Let K be the splitting field of the polynomial $x^4 + 1 \in \mathbb{Q}[x]$ and let G be the Galois group of K over \mathbb{Q} .
 - (a) Prove that G is isomorphic to the Klein 4-group $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.
 - (b) Determine all subfields of K and prove that your determination is complete.
- 4. Let K/F be a field extension with $\alpha \in K$. Prove that if $[F(\alpha) : F]$ is finite and odd, then $F(\alpha) = F(\alpha^2)$.
- 5. (a) Prove that 7 is a prime element of Z[i].
 (b) Prove that (7, X² + 1) is a maximal ideal of Z[X].
- 6. Let R be a commutative ring with a unique maximal ideal. Prove that 0 and 1 are the only idempotents in R. (An element $x \in R$ is said to be idempotent if $x^2 = x$.)
- 7. Let R = k[X, Y] be a polynomial ring over the field k and I = (X, Y) the ideal of R generated by the indeterminates X and Y.
 - (a) Let $H: I \times I \to R$ be the function defined by $H(a, b) = \frac{\partial a}{\partial X}(0, 0) \cdot \frac{\partial b}{\partial Y}(0, 0)$ where $\frac{\partial a}{\partial X}$ and $\frac{\partial b}{\partial Y}$ are formal partial derivatives. Prove that H is an R-bilinear map.
 - (b) Prove that $X \otimes Y \neq Y \otimes X$ in $I \otimes_R I$.
 - (c) Show that there exists a unique *R*-module homomorphism $\theta : I \otimes_R I \to R \otimes_R R$ such that $\theta(a \otimes b) = a \otimes b$ for all $a, b \in I$.
 - (d) Is the map θ defined in part (c) injective? Justify your answer.
- 8. Prove that \mathbb{Q} is not a projective \mathbb{Z} -module.
- 9. Let V be a finite dimensional k-vector space (k is a field) and let $\phi : V \to V$ be a k-linear transformation. Prove that there exists a positive integer n such that

$$\operatorname{Im}(\phi^n) \cap \operatorname{Ker}(\phi^n) = (0).$$

10. Let G be an abelian group with three generators v_1, v_2, v_3 subject to the relations

$$6v_1 + 4v_2 + 2v_3 = 0$$

$$-2v_1 + 2v_2 + 6v_3 = 0$$

Prove that $G \cong (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/10\mathbb{Z}) \oplus \mathbb{Z}$ and find new generators w_1, w_2 and w_3 for G such that $2w_1 = 0$, $10w_2 = 0$ and w_3 has infinite order.