Algebra Preliminary Examination

June 2014

- In answering any part of a question, you may assume the results in previous PARTS

All rings have identity and all modules are unitary (unital).

1. Let G be a group with a normal subgroup N such that $G / N \simeq \mathbb{Z}$. Prove that for each positive integer m, there exists a normal subgroup $N(m) \unlhd G$ such that $G / N(m) \simeq$ $\mathbb{Z} / m \mathbb{Z}$.
2. Classify all groups of order 99.
3. Let K be the splitting field of the polynomial $x^{4}+1 \in \mathbb{Q}[x]$ and let G be the Galois group of K over \mathbb{Q}.
(a) Prove that G is isomorphic to the Klein 4 -group $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
(b) Determine all subfields of K and prove that your determination is complete.
4. Let K / F be a field extension with $\alpha \in K$. Prove that if $[F(\alpha): F]$ is finite and odd, then $F(\alpha)=F\left(\alpha^{2}\right)$.
5. (a) Prove that 7 is a prime element of $\mathbb{Z}[i]$.
(b) Prove that $\left(7, X^{2}+1\right)$ is a maximal ideal of $\mathbb{Z}[X]$.
6. Let R be a commutative ring with a unique maximal ideal. Prove that 0 and 1 are the only idempotents in R. (An element $x \in R$ is said to be idempotent if $x^{2}=x$.)
7. Let $R=k[X, Y]$ be a polynomial ring over the field k and $I=(X, Y)$ the ideal of R generated by the indeterminates X and Y.
(a) Let $H: I \times I \rightarrow R$ be the function defined by $H(a, b)=\frac{\partial a}{\partial X}(0,0) \cdot \frac{\partial b}{\partial Y}(0,0)$ where $\frac{\partial a}{\partial X}$ and $\frac{\partial b}{\partial Y}$ are formal partial derivatives. Prove that H is an R-bilinear map.
(b) Prove that $X \otimes Y \neq Y \otimes X$ in $I \otimes_{R} I$.
(c) Show that there exists a unique R-module homomorphism $\theta: I \otimes_{R} I \rightarrow R \otimes_{R} R$ such that $\theta(a \otimes b)=a \otimes b$ for all $a, b \in I$.
(d) Is the map θ defined in part (c) injective? Justify your answer.
8. Prove that \mathbb{Q} is not a projective \mathbb{Z}-module.
9. Let V be a finite dimensional k-vector space (k is a field) and let $\phi: V \rightarrow V$ be a k-linear transformation. Prove that there exists a positive integer n such that

$$
\operatorname{Im}\left(\phi^{n}\right) \cap \operatorname{Ker}\left(\phi^{n}\right)=(0) .
$$

10. Let G be an abelian group with three generators v_{1}, v_{2}, v_{3} subject to the relations

$$
\begin{array}{r}
6 v_{1}+4 v_{2}+2 v_{3}=0 \\
-2 v_{1}+2 v_{2}+6 v_{3}=0
\end{array}
$$

Prove that $G \cong(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 10 \mathbb{Z}) \oplus \mathbb{Z}$ and find new generators w_{1}, w_{2} and w_{3} for G such that $2 w_{1}=0,10 w_{2}=0$ and w_{3} has infinite order.

