Algebra Preliminary Examination

- Begin each question on a new sheet of paper.
- In answering any part of a question, you may assume the results in previous parts, EVEN IF YOU HAVE NOT SOLVED THEM.

All rings have identity and all modules are unitary.

1. (a) Let G be a group and H a subgroup of G. Let S be the group of all permutations of the left cosets of H in G. Prove that there exists a homomorphism $\phi: G \rightarrow S$ whose kernel lies in H and contains every normal subgroup of G that is contained in H.
(b) Prove that a group with 80 elements is not simple.
(c) Prove that a simple group with 60 elements has a subgroup of order 6 and a subgroup of order 10.
2. (a) Find an element of maximal order in S_{5}.
(b) Describe (up to isomorphism) all the Sylow p-subgroups of S_{5}.
(c) For each p, indicate the number of Sylow p-subgroups.
3. Let p and q be distinct prime numbers. Prove that every group of order $p^{2} q$ is solvable.
4. Let p be a prime number, $L=\mathbb{F}_{p}(X, Y)$ and $K=\mathbb{F}_{p}\left(X^{p}, Y^{p}\right)\left(\mathbb{F}_{p}\right.$ is the field with p elements $)$. For each positive integer n, consider the element $\alpha_{n}=X+Y X^{p^{n}} \in L$ and the subfield $E_{n}=$ $K\left(\alpha_{n}\right) \subseteq L$. Prove the following statements:
(a) $[L: K]=p^{2}$ and $\left[E_{n}: K\right]=p$ for all n.
(b) $E_{n} \neq E_{m}$ if $n \neq m$.
5. Let $f(x)=x^{4}+4 x^{2}+2$.
(a) Prove that $f(x)$ is irreducible over \mathbb{Q}.
(b) Let L be the splitting field of $f(x)$ over \mathbb{Q}. Determine the Galois group $G(L / \mathbb{Q})$.
6. Let R be a commutative ring and let \mathfrak{m} and \mathfrak{n} be two distinct maximal ideals of R. Prove that $\mathfrak{m} \cap \mathfrak{n}=\mathfrak{m n}$.
7. Let R be a ring. Prove that the following are equivalent:
(a) Every R-module is injective.
(b) Every R-module is projective.
8. Let R be a Unique Factorization Domain. Choose an irreducible element $p \in R$, and define the localization at p as the ring of fractions $R_{p}=D^{-1} R$ with respect to the multiplicative set $D=R-(p)$. Show that R_{p} is a Principal Ideal Domain.
9. Let R be a commutative ring and I an ideal of R. For an R-module M, we denote $\left(0:_{M} I\right)=$ $\{x \in M \mid x I=0\}$. Prove that $\operatorname{Hom}_{R}(R / I, M) \cong\left(0:_{M} I\right)$.
10. Let R be a noetherian integral domain. Prove that any non-zero and non-unit element in R is a product of irreducible elements.
