Algebra Preliminary Examination May 2007

• BEGIN EACH QUESTION ON A NEW SHEET OF PAPER.

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS, EVEN IF YOU HAVE NOT SOLVED THEM.

All rings have identity and all modules are unitary.

- 1. (a) Let G be a group and H a subgroup of G. Let S be the group of all permutations of the left cosets of H in G. Prove that there exists a homomorphism $\phi: G \to S$ whose kernel lies in H and contains every normal subgroup of G that is contained in H.
 - (b) Prove that a group with 80 elements is not simple.
 - (c) Prove that a simple group with 60 elements has a subgroup of order 6 and a subgroup of order 10.
- **2.** (a) Find an element of maximal order in S_5 .
 - (b) Describe (up to isomorphism) all the Sylow *p*-subgroups of S_5 .
 - (c) For each p, indicate the number of Sylow p-subgroups.
- **3.** Let p and q be distinct prime numbers. Prove that every group of order p^2q is solvable.
- 4. Let p be a prime number, $L = \mathbb{F}_p(X, Y)$ and $K = \mathbb{F}_p(X^p, Y^p)$ (\mathbb{F}_p is the field with p elements). For each positive integer n, consider the element $\alpha_n = X + YX^{p^n} \in L$ and the subfield $E_n = K(\alpha_n) \subseteq L$. Prove the following statements:
 - (a) $[L:K] = p^2$ and $[E_n:K] = p$ for all *n*.
 - (b) $E_n \neq E_m$ if $n \neq m$.
- 5. Let $f(x) = x^4 + 4x^2 + 2$.
 - (a) Prove that f(x) is irreducible over \mathbb{Q} .
 - (b) Let L be the splitting field of f(x) over \mathbb{Q} . Determine the Galois group $G(L/\mathbb{Q})$.
- 6. Let R be a commutative ring and let \mathfrak{m} and \mathfrak{n} be two distinct maximal ideals of R. Prove that $\mathfrak{m} \cap \mathfrak{n} = \mathfrak{m}\mathfrak{n}$.
- 7. Let R be a ring. Prove that the following are equivalent:
 - (a) Every *R*-module is injective.
 - (b) Every *R*-module is projective.
- 8. Let R be a Unique Factorization Domain. Choose an irreducible element $p \in R$, and define the localization at p as the ring of fractions $R_p = D^{-1}R$ with respect to the multiplicative set D = R - (p). Show that R_p is a Principal Ideal Domain.
- **9.** Let R be a commutative ring and I an ideal of R. For an R-module M, we denote $(0:_M I) = \{x \in M \mid xI = 0\}$. Prove that $\operatorname{Hom}_R(R/I, M) \cong (0:_M I)$.
- 10. Let R be a noetherian integral domain. Prove that any non-zero and non-unit element in R is a product of irreducible elements.