Algebra Preliminary Examination
 May 2018

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- For this exam, you have two options:
- Option 1: Submit solutions to questions from Part A and from Part B.
- Option 2: Submit solutions to questions from Part A and from Part C.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\phi: R \rightarrow S$ is a ring homomorphism, we also assume $\phi\left(1_{R}\right)=1_{S}$.
- This exam has two pages.

A. Rings, Modules, and Linear Algebra (required)

1. (a) Prove that $\mathbb{Z}[X] /\left(X^{2}+1\right)$ is isomorphic to a subring of the field of complex numbers.
(b) Prove that $\mathbb{Z}[X] /\left(X^{2}-6, X^{2}+1\right)$ is a field.
2. Let R be a commutative ring. Let I and J be ideals of R such that $I+J=R$. Prove that there exists an isomorphism of rings $R /(I \cap J) \cong R / I \times R / J$.
3. Let R be an integral domain. Assume that every element of R is a product of finitely many prime elements of R.
(a) Prove that if a is an irreducible element of R, then a is a prime element of R.
(b) Prove that R is a unique factorization domain.
4. Let R be a commutative ring and L an R-module. Let M, N be R-submodules of L such that $M \cap N$ and $M+N$ are finitely generated. Prove that M and N are finitely generated.
5. Let R be a commutative ring and M an R-module generated by $y_{1}, \ldots, y_{n} \in M$.
(a) Let $\varphi: R \rightarrow M^{n}$ defined by $\varphi(a)=\left(a y_{1}, \ldots, a y_{n}\right)$. Prove that φ is an R-module homomorphism.
(b) Assume that M is a noetherian R-module. Prove that $R / \operatorname{Ann}_{R}(M)$ is a noetherian ring. (Recall that $\operatorname{Ann}_{R}(M)=\{r \in R \mid r M=0\}$.)
(c) If M is noetherian, is it necessarily true that the ring R is noetherian? (Justify your answer.)
6. If F is a field, V is a finite dimensional F-vector space, and $T: V \rightarrow V$ is an F-linear map, we denote by V_{T} the F-vector space V with the $F[X]$-module structure induced by $X \cdot v=T(v)$ for all $v \in V$.
Let F be a field, and V, W finite dimensional F-vector spaces. Let $T: V \rightarrow V$ and $S: W \rightarrow W$ be F-linear maps. Prove that

$$
\operatorname{Hom}_{F[X]}\left(V_{T}, W_{S}\right)=\left\{U \in \operatorname{Hom}_{F}(V, W) \mid U \circ T=S \circ U\right\}
$$

B. Groups, Fields, and Galois Theory (option 1)

1. Classify all groups of order $2 p$ where p is an odd prime.
2. Write down all Sylow subgroups of A_{4}. Justify your answers.
3. Let $F \subseteq K$ be an extension of fields such that $\operatorname{char}(F)=p$ is prime. Fix any algebraic element $u \in K$ and let $m_{u, F}(X) \in F[X]$ be its minimal polynomial. Prove that $m_{u, F}(X)$ is a separable polynomial if and only if $F(u)=F\left(u^{p}\right)$.
4. (a) Determine the Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7}) / \mathbb{Q}(\sqrt{105}))$.
(b) Exhibit (with proof) the complete lattice of subfields between $\mathbb{Q}(\sqrt{105})$ and $\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7})$.

C. Homological Algebra (option 2)

1. Let m, n be integers and let $d=\operatorname{gcd}(a, b)$. Prove that

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / d \mathbb{Z}
$$

2. Let R be a commutative ring and let $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$ be an exact sequence of R-modules. Prove that

$$
\operatorname{pd}_{R} M \leq \sup \left\{\operatorname{pd}_{R} M_{1}, \operatorname{pd}_{R} M_{2}\right\} .
$$

Moreover, if $\operatorname{pd}_{R} M<\sup \left\{\operatorname{pd}_{R} M_{1}, \operatorname{pd}_{R} M_{2}\right\}$, prove that

$$
\operatorname{pd}_{R} M_{2}=\operatorname{pd}_{R} M_{1}+1
$$

3. Let R be a commutative ring and M an R-module. Prove that if $x \in R$ is a non-zerodivisor on both R and M, then $\operatorname{Tor}_{i}^{R}(M, R / x R)=0$ for $i \geq 1$.
4. Let A be a \mathbb{Z}-module and such that $n A=0$ for some non-zero integer n.
(a) Prove that $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Z})=0$.
(b) Prove that $\operatorname{Ext}_{\mathbb{Z}}^{1}(A, \mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Z} / n \mathbb{Z})$.
