Algebra Preliminary Examination September 2014

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS

All rings have identity and all modules are unitary (unital).

- 1. Write down all nonisomorphic abelian groups of order 72.
- **2.** Let G be a group of order p^2q^2 with p,q distinct primes such that $p \nmid (q^2 1)$ and $q \nmid (p^2 1)$. Prove that if P is a Sylow p-subgroup and Q is a Sylow q-subgroup, then $G \cong P \times Q$.
- **3.** Let $F \subseteq L \subseteq K$ be a tower of fields with $u \in K$ algebraic over F and let $m_{u,F}(x) \in F[x]$ be the minimum polynomial of u over F. Prove that if $\deg(m_{u,F})$ and [L:F] are relatively prime, then $m_{u,F}(x)$ is irreducible over L.
- 4. Let K be the splitting field of the polynomial $x^4 2x^2 2 \in \mathbb{Q}[X]$. Find an automorphism $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ of order 4.
- 5. Let K be a field and V a vector space over K. Let α and β be K-endomorphisms of V with $\alpha\beta = 0$ and $\mathrm{id}_V = \alpha + \beta$. Show that $V = \mathrm{im}(\alpha) \oplus \mathrm{im}(\beta)$.
- 6. Prove that the ideal $(X^2 + 2, X^2 + 7)$ is a maximal ideal of $\mathbb{Z}[X]$.
- 7. Prove or disprove:
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to \mathbb{Q} as a \mathbb{Z} -module.
 - (b) $\mathbb{Q}(\sqrt{10}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{10})$ is isomorphic to $\mathbb{Q}(\sqrt{10})$ as \mathbb{Q} -vector space.
- 8. Construct, up to similarity, all the linear transformations $T : \mathbb{C}^6 \to \mathbb{C}^6$ with minimal polynomial $(X-5)^2(X-6)^2$.
- **9.** Let $R = \mathbb{Z}[X]$ and I = (2, X) be the ideal of R generated by 2 and X. Prove that I is not a free R-module and the rank of the R-module I is 1.
- **10.** Let $R = \{f \in \mathbb{Z}[X] \mid \text{the coefficient of } X \text{ in } f \text{ is even}\}.$
 - (a) Prove that R is a subring of $\mathbb{Z}[X]$.
 - (b) Prove that 2 and 2X have a g.c.d (greatest common divisor) in R but not a l.c.m. (least common multiple) in R.