Algebra Preliminary Examination

September 2014

- In answering any part of a question, you may assume the results in previous PARTS

All rings have identity and all modules are unitary (unital).

1. Write down all nonisomorphic abelian groups of order 72 .
2. Let G be a group of order $p^{2} q^{2}$ with p, q distinct primes such that $p \nmid\left(q^{2}-1\right)$ and $q \nmid\left(p^{2}-1\right)$. Prove that if P is a Sylow p-subgroup and Q is a Sylow q-subgroup, then $G \cong P \times Q$.
3. Let $F \subseteq L \subseteq K$ be a tower of fields with $u \in K$ algebraic over F and let $m_{u, F}(x) \in F[x]$ be the minimum polynomial of u over F. Prove that if $\operatorname{deg}\left(m_{u, F}\right)$ and $[L: F]$ are relatively prime, then $m_{u, F}(x)$ is irreducible over L.
4. Let K be the splitting field of the polynomial $x^{4}-2 x^{2}-2 \in \mathbb{Q}[X]$. Find an automorphism $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ of order 4 .
5. Let K be a field and V a vector space over K. Let α and β be K-endomorphisms of V with $\alpha \beta=0$ and $\mathrm{id}_{V}=\alpha+\beta$. Show that $V=\operatorname{im}(\alpha) \oplus \operatorname{im}(\beta)$.
6. Prove that the ideal $\left(X^{2}+2, X^{2}+7\right)$ is a maximal ideal of $\mathbb{Z}[X]$.
7. Prove or disprove:
(a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to \mathbb{Q} as a \mathbb{Z}-module.
(b) $\mathbb{Q}(\sqrt{10}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{10})$ is isomorphic to $\mathbb{Q}(\sqrt{10})$ as \mathbb{Q}-vector space.
8. Construct, up to similarity, all the linear transformations $T: \mathbb{C}^{6} \rightarrow \mathbb{C}^{6}$ with minimal polynomial $(X-5)^{2}(X-6)^{2}$.
9. Let $R=\mathbb{Z}[X]$ and $I=(2, X)$ be the ideal of R generated by 2 and X. Prove that I is not a free R-module and the rank of the R-module I is 1 .
10. Let $R=\{f \in \mathbb{Z}[X] \mid$ the coefficient of X in f is even $\}$.
(a) Prove that R is a subring of $\mathbb{Z}[X]$.
(b) Prove that 2 and $2 X$ have a g.c.d (greatest common divisor) in R but not a l.c.m. (least common multiple) in R.
