Algebra Preliminary Examination

September 2010

• BEGIN EACH QUESTION ON A NEW SHEET OF PAPER.

• IN ANSWERING ANY PART OF A QUESTION, YOU MAY ASSUME THE RESULTS IN PREVIOUS PARTS

All rings have identity and all modules are unitary (unital).

- **1.** Let G be a group and let H be a subgroup of the center Z(G). Assume that G/H is cyclic. Prove that G is abelian.
- **2.** Let X be a subgroup of $(\mathbb{Q}, +)$ such that $X + \mathbb{Z} = \mathbb{Q}$. Prove that $X = \mathbb{Q}$.
- **3.** Let G be a group with a non-trivial subgroup H of index r > 1. Prove the following:
 - (a) If G is simple, then |G| divides r!.
 - (b) If $r \in \{2, 3, 4\}$, then G cannot be simple.
- 4. Prove that a group of order 105 has a subgroup of order 35.
- **5.** Let *R* be a commutative ring and *A*, *B* be *R*-modules. Prove that if $f : A \to B$ and $g : B \to A$ are *R*-module homomorphisms such that $g \circ f = 1_A$, then $B \cong \text{Im } f \oplus \text{Ker } g$.
- **6.** Let R be a commutative ring and I, J ideals of R with $I \cap J = 0$. If R/I and R/J are noetherian rings, then R is a noetherian ring.
- 7. Let R be a ring with identity 1 (but not necessarily commutative). Prove that the following are equivalent:
 - (a) R is a field.
 - (b) For every $a \in R \setminus \{1\}$ there exists $b \in R$ such that a + b = ab.
 - (c) For every $a \in R \setminus \{1\}$ there exists $b \in R$ such that a + b = ba.
- 8. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} of degree 4 with cyclic Galois group.
- **9.** Let d, n be positive integers. Prove that d divides n if and only if $X^d 1$ divides $X^n 1$.
- **10.** Let G be a finite abelian group of order n.
 - (a) Prove that for any divisor q of n there exists a subgroup of order q.
 - (b) Prove that there exists an element $x \in G$ such that $\operatorname{ord}(y)$ divides $\operatorname{ord}(x)$ for all $y \in G$.