Analysis Qualifying Exam

- Submit 6 problems from part 1 and 3 problems from part 2.
- Please start every problem on a new page, label your pages and write your student ID, but not your name, on each page.

Part 1 - Real Analysis

Lebesgue measure is denoted by m.

- 1. Let \mathcal{A} be an algebra of sets that is closed under countable increasing unions. Show that \mathcal{A} is a σ -algebra.
- 2. Let $A \subset E \subset B$, where A, B are Lebesgue measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.
- 3. If $\{f_n\}_{n \in \mathbb{N}}$ is a sequence of Lebesgue measurable real-valued functions, prove that $f = \liminf f_n$ is Lebesgue measurable.
- 4. Let $f : \mathbb{R} \to [0, \infty)$ be Lebesgue measurable.
 - (a) Let $E_m = \{x \in \mathbb{R} : f(x) > 1/m\}$. Use the monotone convergence theorem to show that

$$\lim_{m \to \infty} \int_{E_m} f dm = \int_{\mathbb{R}} f dm.$$

(b) Prove that, if $\int_{\mathbb{R}} f dm < \infty$, then for all $\varepsilon > 0$ there exists $A \in \mathcal{B}_{\mathbb{R}}$ with $m(A) < \infty$ so that

$$\int_{\mathbb{R}} f dm < \int_{A} f dm + \varepsilon.$$

- 5. Let $\{f_n\}$ be a sequence of Lebesgue integrable functions that converge to f in L^1 .
 - (a) Prove that $\{f_n\}$ converges to f in measure.
 - (b) Give an example of a sequence $\{f_n\}$ and a function f such that $\{f_n\}$ converges to f in measure, but $\{f_n\}$ does not converge to f in L^1 .
- 6. Let f, g be Lebesgue integrable functions on \mathbb{R} . Prove that the function F(x, y) = f(y)g(x-y) is Lebesgue integrable in \mathbb{R}^2
- 7. Let μ_F be the Borel measure on \mathbb{R} with distribution function

$$F(x) = \begin{cases} \arctan(x) & \text{if } x < 0, \\ x^2 + 1 & \text{if } x \ge 0. \end{cases}$$

- (a) Calculate $\mu_F([0,3))$ and $\mu_F((0,3))$.
- (b) State what it means for a measure μ to be absolutely continuous with respect to Lebesgue measure.
- (c) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure.
- 8. Construct a family of Lebesgue measurable functions $\chi_t : \mathbb{R} \to \mathbb{R}, t \in \mathbb{R}$, with the property that $\chi = \sup_{t \in \mathbb{R}} \chi_t$ is not a Lebesgue measurable function. (You may assume without proof that non-measurable sets exist.)

- 9. Show by way of an example that an open, dense set in \mathbb{R} need not have infinite measure.
- 10. Let f be a continuous function of bounded variation. Prove that $f = f_1 f_2$, where both f_1, f_2 are monotonic and continuous.

Part 2 - Functional and Complex Analysis

- 1. Let $1 \leq p < q < \infty$.
 - (a) Give examples that show that neither $L^p(\mathbb{R}) \subset L^q(\mathbb{R})$ nor $L^q(\mathbb{R}) \subset L^p(\mathbb{R})$.
 - (b) Prove that if f is bounded, and $f \in L^p(\mathbb{R})$, then $f \in L^q(\mathbb{R})$.
 - (c) Prove that if f is supported on a set of finite measure and $f \in L^q(\mathbb{R})$, then $f \in L^p(\mathbb{R})$.
- 2. Let H be a Hilbert space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .
 - (a) State Riesz Representation Theorem for Hilbert spaces.
 - (b) Let $T: H \to H$ be a bounded operator. Prove that there exists a unique operator $T^*: H \to H$ such that for every $x, y \in H$,

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Hint: For fixed y, define $\Lambda_y : H \to \mathbb{K}$ by $\Lambda_y(x) = \langle Tx, y \rangle$.

- 3. Let X be a Banach space.
 - (a) State the Uniform Boundedness Principle.
 - (b) Let $A \subset X$. Prove that A is a bounded set if and only if for every $\Lambda \in X^*$, sup{ $|\Lambda(a)|$: $a \in A \} < \infty.$ Hint: Consider X as a subset of X^{**} .

- 4. Prove that a finite rank operator is compact.
- 5. Prove Liouville's theorem, i.e., show that every bounded entire function is constant. (You may use without proof Cauchy's integral formula.)
- 6. Let f be analytic in the open upper half plane, continuous on the closed upper half plane, and $f(\mathbb{R}) \subset \mathbb{R}$. Define $q: \mathbb{C} \to \mathbb{C}$ by

$$g(z) = \begin{cases} f(z) & \text{if } \Im z \ge 0, \\ \overline{f(\overline{z})} & \text{if } \Im z < 0. \end{cases}$$

Show that g is entire.(Hint: Show that g is continuous and use Morera's theorem.)

7. Let $f: \mathbb{D} \to \mathbb{D}$, where $D = \{z: |z| < 1\}$. Assume that f(0) = 0 and f'(0) = 1. Show that f(z) = cz for some constant c with |c| = 1. (Hint: Consider $g(z) = z^{-1}f(z)$.)