- Submit 6 problems from part 1 and 3 problems from part 2.
- Please start every problem on a new page, label your pages and write your student ID, but not your name, on each page.

Part 1 - Real Analysis

Lebesgue measure is denoted by m.

1. Let \mathcal{A} be an algebra of sets that is closed under countable increasing unions. Show that \mathcal{A} is a σ-algebra.
2. Let $A \subset E \subset B$, where A, B are Lebesgue measurable sets of finite measure. Prove that if $m(A)=m(B)$, then E is measurable.
3. If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of Lebesgue measurable real-valued functions, prove that $f=\liminf f_{n}$ is Lebesgue measurable.
4. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be Lebesgue measurable.
(a) Let $E_{m}=\{x \in \mathbb{R}: f(x)>1 / m\}$. Use the monotone convergence theorem to show that

$$
\lim _{m \rightarrow \infty} \int_{E_{m}} f d m=\int_{\mathbb{R}} f d m
$$

(b) Prove that, if $\int_{\mathbb{R}} f d m<\infty$, then for all $\varepsilon>0$ there exists $A \in \mathcal{B}_{\mathbb{R}}$ with $m(A)<\infty$ so that

$$
\int_{\mathbb{R}} f d m<\int_{A} f d m+\varepsilon
$$

5. Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue integrable functions that converge to f in L^{1}.
(a) Prove that $\left\{f_{n}\right\}$ converges to f in measure.
(b) Give an example of a sequence $\left\{f_{n}\right\}$ and a function f such that $\left\{f_{n}\right\}$ converges to f in measure, but $\left\{f_{n}\right\}$ does not converge to f in L^{1}.
6. Let f, g be Lebesgue integrable functions on \mathbb{R}. Prove that the function $F(x, y)=$ $f(y) g(x-y)$ is Lebesgue integrable in \mathbb{R}^{2}
7. Let μ_{F} be the Borel measure on \mathbb{R} with distribution function

$$
F(x)= \begin{cases}\arctan (x) & \text { if } x<0 \\ x^{2}+1 & \text { if } x \geq 0\end{cases}
$$

(a) Calculate $\mu_{F}([0,3))$ and $\mu_{F}((0,3))$.
(b) State what it means for a measure μ to be absolutely continuous with respect to Lebesgue measure.
(c) Prove that μ_{F} is not absolutely continuous with respect to Lebesgue measure.
8. Construct a family of Lebesgue measurable functions $\chi_{t}: \mathbb{R} \rightarrow \mathbb{R}, t \in \mathbb{R}$, with the property that $\chi=\sup _{t \in \mathbb{R}} \chi_{t}$ is not a Lebesgue measurable function. (You may assume without proof that non-measurable sets exist.)
9. Show by way of an example that an open, dense set in \mathbb{R} need not have infinite measure.
10. Let f be a continuous function of bounded variation. Prove that $f=f_{1}-f_{2}$, where both f_{1}, f_{2} are monotonic and continuous.

Part 2 - Functional and Complex Analysis

1. Let $1 \leq p<q<\infty$.
(a) Give examples that show that neither $L^{p}(\mathbb{R}) \subset L^{q}(\mathbb{R})$ nor $L^{q}(\mathbb{R}) \subset L^{p}(\mathbb{R})$.
(b) Prove that if f is bounded, and $f \in L^{p}(\mathbb{R})$, then $f \in L^{q}(\mathbb{R})$.
(c) Prove that if f is supported on a set of finite measure and $f \in L^{q}(\mathbb{R})$, then $f \in L^{p}(\mathbb{R})$.
2. Let H be a Hilbert space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.
(a) State Riesz Representation Theorem for Hilbert spaces.
(b) Let $T: H \rightarrow H$ be a bounded operator. Prove that there exists a unique operator $T^{*}: H \rightarrow H$ such that for every $x, y \in H$,

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle .
$$

Hint: For fixed y, define $\Lambda_{y}: H \rightarrow \mathbb{K}$ by $\Lambda_{y}(x)=\langle T x, y\rangle$.
3. Let X be a Banach space.
(a) State the Uniform Boundedness Principle.
(b) Let $A \subset X$. Prove that A is a bounded set if and only if for every $\Lambda \in X^{*}, \sup \{|\Lambda(a)|$: $a \in A\}<\infty$.
Hint: Consider X as a subset of $X^{* *}$.
4. Prove that a finite rank operator is compact.
5. Prove Liouville's theorem, i.e., show that every bounded entire function is constant. (You may use without proof Cauchy's integral formula.)
6. Let f be analytic in the open upper half plane, continuous on the closed upper half plane, and $f(\mathbb{R}) \subseteq \mathbb{R}$. Define $g: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g(z)=\left\{\begin{array}{l}
f(z) \text { if } \Im z \geq 0 \\
\overline{f(\bar{z})} \text { if } \Im z<0
\end{array}\right.
$$

Show that g is entire.(Hint: Show that g is continuous and use Morera's theorem.)
7. Let $f: \mathbb{D} \rightarrow \mathbb{D}$, where $D=\{z:|z|<1\}$. Assume that $f(0)=0$ and $f^{\prime}(0)=1$. Show that $f(z)=c z$ for some constant c with $|c|=1$. (Hint: Consider $g(z)=z^{-1} f(z)$.)

