Analysis Preliminary Examination
 August 2017

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.
Part 1: Real Analysis
Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

1. Let (X, \mathcal{M}, μ) be a σ-finite measure space.
(a) Show that if $E \in \mathcal{M}$ satisfies $\mu(E)>0$, then there exists $F \subseteq E, F \in \mathcal{M}$ such that $0<\mu(F)<\infty$.
(b) Prove that if f, g are non-negative measurable functions such that $\int_{E} f d \mu=$ $\int_{E} g d \mu$ for every $E \in \mathcal{M}$, then $f=g \mu$-almost everywhere.
2. Let (X, \mathcal{M}, μ) be a measure space and let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions.
(a) Assume that there exists a non-negative measurable function F satisfying

$$
\int_{X} F d \mu<\infty \text { and }\left|f_{n}\right| \leq F \text { for all } n
$$

Prove that

$$
\int_{X} \limsup f_{n} d \mu \geq \limsup \int_{X} f_{n} d \mu
$$

(b) Give an example showing that the conclusion of part (a) may fail without the assumption of the existence of F.
3. Suppose that $A \subseteq \mathbb{R}$ satisfies $m_{1}(A)=0$, where m_{1} denotes one dimensional Lebesgue measure. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$, satisfying that $|f(x)-f(y)| \leq \sqrt{|x-y|}$ for every $x, y \in \mathbb{R}$. Show that $m_{2}(f(A))=0$ (here, m_{2} is the Lebesgue measure in \mathbb{R}^{2}).
4. Let ν be a signed measure defined on (X, \mathcal{M}).
(a) Write the definition of positive, negative and null sets for ν.
(b) Show that a countable union of positive sets for ν is a positive set for ν.
5. Consider the Lebesgue-Stieltjes measure $d F$ associated to the function

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
\pi / 4 & \text { if } 0 \leq x<1 \\
\arctan x & \text { if } 1 \leq x
\end{array}\right.
$$

Show that $d F$ is neither absolutely continuous nor mutually singular with respect to the Lebesgue measure m on \mathbb{R}, and find the Radon-Nikodym decomposition of $d F$ with respect to m.
6. Let (X, \mathcal{M}, μ) be a measure space, and let $f, f_{n}: X \rightarrow \mathbb{R}(n \in \mathbb{N})$ be measurable functions.
(a) Give the definition of convergence in measure.
(b) Show that $f_{n} \rightarrow f$ in L^{1} implies that $f_{n} \rightarrow f$ in measure.
(c) Give an example to show that the converse of (b) does not always hold.
7. Let $f: X \rightarrow \mathbb{R}$ be measurable. Assume there exists measurable sets E_{n} with $E_{n} \subseteq E_{n+1}$ and $X=\cup_{n} E_{n}$, and $c>0$ so that $\int_{E_{n}}|f| \leq c$ for all $n \in \mathbb{N}$. Show that f is in L^{1} and $\int|f| \leq c$.
8. Let $f(x)=1$ for $-1 \leq x \leq 1$ and $f(x)=0$ otherwise. Define $g(x, y)=f(x-y)$. Is g an element of $L^{1}(\mathbb{R} \times \mathbb{R})$? Justify.

Part 2: Complex and Functional Analysis

9. Let M be a closed subspace of the Banach space X. Let $x_{0} \in X$ be such that the distance from x_{0} to M is positive (the distance is defined by $d\left(x_{0}, M\right)=$ $\left.\inf \left\{\left\|x_{0}-y\right\|: y \in M\right\}\right)$. Prove that there exists a functional $F \in X^{*}$ with the following properties:
(a) $F(x)=0$ for every $x \in M$.
(b) $F\left(x_{0}\right)=d\left(x_{0}, M\right)$.
(c) $\|F\|=1$
10. Prove that a necessary and sufficient condition for a normed space X to be complete is that for every sequence of vectors $\left\{x_{n}\right\} \subset X$ such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$, the series $\sum_{n=1}^{\infty} x_{n}$ converges to an element $x \in X$.
11. Let X be a Banach space and let $T: X \rightarrow Y$ be bijective.
(a) State the Open Mapping Theorem.
(b) Use the Open Mapping Theorem to prove that if T is continuous then so is T^{-1}.
12. Assume that $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous on \mathbb{C} and analytic on $\mathbb{C} \backslash[-1,1]$. Show that f is entire.
13. Does there exist a holomorphic surjection from the unit disk to \mathbb{C} ? (Construct an example, or prove that it cannot exist.)
14. Evaluate

$$
\int_{\gamma} \frac{e^{i z}}{z^{2}} d z
$$

where γ is the positively oriented circle of radius 1 with center at the origin.

