Analysis Preliminary Examination August 2017

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1: Real Analysis

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

- 1. Let (X, \mathcal{M}, μ) be a σ -finite measure space.
 - (a) Show that if $E \in \mathcal{M}$ satisfies $\mu(E) > 0$, then there exists $F \subseteq E$, $F \in \mathcal{M}$ such that $0 < \mu(F) < \infty$.
 - (b) Prove that if f, g are non-negative measurable functions such that $\int_E f d\mu = \int_E g d\mu$ for every $E \in \mathcal{M}$, then $f = g \mu$ -almost everywhere.
- 2. Let (X, \mathcal{M}, μ) be a measure space and let $f_n : X \to \mathbb{R}$ be a sequence of measurable functions.
 - (a) Assume that there exists a non-negative measurable function F satisfying

$$\int_X F d\mu < \infty \text{ and } |f_n| \le F \text{ for all } n.$$

Prove that

$$\int_X \limsup f_n d\mu \ge \limsup \int_X f_n d\mu.$$

- (b) Give an example showing that the conclusion of part (a) may fail without the assumption of the existence of F.
- 3. Suppose that $A \subseteq \mathbb{R}$ satisfies $m_1(A) = 0$, where m_1 denotes one dimensional Lebesgue measure. Let $f : \mathbb{R} \to \mathbb{R}^2$, satisfying that $|f(x) - f(y)| \leq \sqrt{|x - y|}$ for every $x, y \in \mathbb{R}$. Show that $m_2(f(A)) = 0$ (here, m_2 is the Lebesgue measure in \mathbb{R}^2).
- 4. Let ν be a signed measure defined on (X, \mathcal{M}) .
 - (a) Write the definition of positive, negative and null sets for ν .
 - (b) Show that a countable union of positive sets for ν is a positive set for ν .
- 5. Consider the Lebesgue-Stieltjes measure dF associated to the function

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \pi/4 & \text{if } 0 \le x < 1\\ \arctan x & \text{if } 1 \le x. \end{cases}$$

Show that dF is neither absolutely continuous nor mutually singular with respect to the Lebesgue measure m on \mathbb{R} , and find the Radon-Nikodym decomposition of dF with respect to m.

- 6. Let (X, \mathcal{M}, μ) be a measure space, and let $f, f_n : X \to \mathbb{R}$ $(n \in \mathbb{N})$ be measurable functions.
 - (a) Give the definition of convergence in measure.
 - (b) Show that $f_n \to f$ in L^1 implies that $f_n \to f$ in measure.
 - (c) Give an example to show that the converse of (b) does not always hold.
- 7. Let $f : X \to \mathbb{R}$ be measurable. Assume there exists measurable sets E_n with $E_n \subseteq E_{n+1}$ and $X = \bigcup_n E_n$, and c > 0 so that $\int_{E_n} |f| \leq c$ for all $n \in \mathbb{N}$. Show that f is in L^1 and $\int |f| \leq c$.
- 8. Let f(x) = 1 for $-1 \le x \le 1$ and f(x) = 0 otherwise. Define g(x, y) = f(x y). Is g an element of $L^1(\mathbb{R} \times \mathbb{R})$? Justify.

Part 2: Complex and Functional Analysis

- 9. Let M be a closed subspace of the Banach space X. Let $x_0 \in X$ be such that the distance from x_0 to M is positive (the distance is defined by $d(x_0, M) =$ $\inf\{\|x_0 - y\| : y \in M\}$). Prove that there exists a functional $F \in X^*$ with the following properties:
 - (a) F(x) = 0 for every $x \in M$.
 - (b) $F(x_0) = d(x_0, M)$.
 - (c) ||F|| = 1
- 10. Prove that a necessary and sufficient condition for a normed space X to be complete is that for every sequence of vectors $\{x_n\} \subset X$ such that

$$\sum_{n=1}^{\infty} ||x_n|| < \infty$$
, the series $\sum_{n=1}^{\infty} x_n$ converges to an element $x \in X$.

- 11. Let X be a Banach space and let $T: X \to Y$ be bijective.
 - (a) State the Open Mapping Theorem.
 - (b) Use the Open Mapping Theorem to prove that if T is continuous then so is T^{-1} .
- 12. Assume that $f : \mathbb{C} \to \mathbb{C}$ is continuous on \mathbb{C} and analytic on $\mathbb{C} \setminus [-1, 1]$. Show that f is entire.
- 13. Does there exist a holomorphic surjection from the unit disk to \mathbb{C} ? (Construct an example, or prove that it cannot exist.)
- 14. Evaluate

$$\int_{\gamma} \frac{e^{iz}}{z^2} dz$$

where γ is the positively oriented circle of radius 1 with center at the origin.