Analysis Preliminary Examination
 May 2017

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1: Real Analysis

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

1. Let μ be a measure defined on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ such that for every $x \in \mathbb{R}, \mu(\{x\})>0$. Show that if $\mu(A)<\infty$, then for every $n \in \mathbb{N}$, the set $\left\{x \in A: \mu(\{x\})>\frac{1}{n}\right\}$ is finite. Conclude that if $\mu(A)<\infty$, then A must be countable.
2. Let X be an uncountable set. For each $S \subseteq X$, we define

$$
\begin{aligned}
& \mu^{*}(S)=\left\{\begin{array}{lc}
0 & \text { if } S \text { is countable } \\
1 & \text { if } S \text { is uncountable }
\end{array}\right. \\
& \nu^{*}(S)= \begin{cases}0 & \text { if } S \text { is countable } \\
\infty & \text { if } S \text { is uncountable }\end{cases}
\end{aligned}
$$

Show that μ^{*} and ν^{*} are outer measures and describe the σ-algebra of measurable sets for each of them.
3. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be a measurable function. Show that

$$
\lim _{n \rightarrow \infty} \int_{X}\left[1-\left(\frac{2}{e^{f(x)}+e^{-f(x)}}\right)^{n}\right] d \mu(x)=\mu(\{x \in X: f(x) \neq 0\})
$$

explaining which convergence theorem you are using.
4. True or false? Let A, B be subsets of \mathbb{R} such that B is Lebesgue measurable in \mathbb{R} and $A \times B$ is Lebesgue measurable in \mathbb{R}^{2}. Then A is Lebesgue measurable in \mathbb{R}. (If true, prove it; if false, give a counterexample).
5. Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\sum_{n=0}^{\infty}\left|a_{n}\right|=M<\infty$. Let $X=$ $\{n \in \mathbb{Z}: n \geq 0\}$ and let ν be the counting measure on $\mathcal{P}(X)$. On the product space $(X \times X, \mathcal{P}(X) \times \mathcal{P}(X), \nu \times \nu)$ we consider the function $f: X \times X \rightarrow \mathbb{R}$ defined by $f(m, n)=a_{n} 2^{-|m-n|}$.
(a) Prove that f is in $L^{1}(X \times X)$.
(b) Show that the integral of f equals $\sum_{n=0}^{\infty} a_{n}\left(3-2^{-n}\right)$, explaining which theorem(s) you have used.
6. Let $\nu(E)=\int_{E} f d \mu$, where μ is a positive measure and f is an extended μ-integrable function. Describe the Hahn decomposition of ν and its variations (positive, negative and total) in terms of f and μ.
7. Let (X, \mathcal{M}, μ) be a measure space. Let ν be another measure on (X, \mathcal{M}).
(a) Prove that if $\mu \perp \nu$ and $\nu \ll \mu$, then $\nu(E)=0$ for every $E \in \mathcal{M}$.
(b) Let $\left\{\lambda_{n}\right\}$ be a sequence of measures on (X, \mathcal{M}) such that $\lambda_{n} \ll \mu$ for every n. We define $\lambda(A)=\sum_{n=0}^{\infty} \lambda_{n}(A)$. Prove that λ is a measure on (X, \mathcal{M}) and that $\lambda \ll \mu$.
8. Let $F: \mathbb{R} \rightarrow \mathbb{R}$. Prove that the following statements are equivalent.
(a) There exists a constant $M<\infty$ such that for every $x, y \in \mathbb{R},|F(x)-F(y)| \leq$ $M|x-y|$.
(b) F is absolutely continuous and $\left|F^{\prime}(x)\right| \leq M$ for almost every $x \in \mathbb{R}$.

Part 2: Complex and Functional Analysis

9. Let f be analytic in an open set G and g be analytic in an open set containing $f(G)$. Assume that $g \circ f$ is constant. Show that either f or g must be constant.
10. Let f be analytic in $B(0,1) \backslash\{0\}$ and nonvanishing. Assume that f^{\prime} / f has a pole of finite order at $z=0$.
(a) Show that there exists $m \in \mathbb{N}$ so that

$$
\frac{f^{\prime}(z)}{f(z)}=\sum_{n=1}^{m} a_{n} z^{-n}+g(z)
$$

where g is analytic in $B(0,1)$, and a_{1} is an integer.
(b) Show that there exists $k \in \mathbb{Z}$, an analytic function h on $B(0,1)$ with $h(0) \neq 0$, and a polynomial P so that

$$
f(z)=z^{k} h(z) e^{P(1 / z)}
$$

11. Compute for $a>0$

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x
$$

(Hint: Consider a branch of the logarithm that allows for integration on a contour involving $[-K, K]$.)
12. Let f be analytic on $B(0,1)$ and suppose $|f(z)| \leq 1$ for $|z|<1$. Show that $\left|f^{\prime}(0)\right| \leq 1$.
13. Consider the spaces $\left(l_{p},\| \|_{p}\right), 1 \leq p \leq \infty$.
a) Show that $l_{p} \subset l_{q}$ properly if $p<q$.
b) Show that l_{p} is separable if $1 \leq p<\infty$. What can you say about the separability of l_{∞} ? Justify your answer.
14. Consider $\left(C[0,1],\| \|_{\infty}\right)$, and let $K(x, y)$ be a function continuous on the unit square $[0,1]^{2}$. For any $f \in C[0,1]$, define an operator $T: C[0,1] \rightarrow C[0,1]$ by

$$
T f(x)=\int_{[0,1]} K(x, y) f(y) d y
$$

(a) Show that T is a bounded linear operator on $C[0,1]$.
(b) What is $\|T\|$? Justify your answer.
15. Let M and N be closed subspaces of a Hilbert space H. Prove that $M \oplus N$ is closed provided that $x \perp y$ for all $x \in M, y \in N$.
16. Let X be a normed space and $x_{0} \in X, x_{0} \neq 0$. Prove that $\exists f \in X^{*}$ with $\|f\|=1$ and $f\left(x_{0}\right)=\left\|x_{0}\right\|$. [Hint: Use Hahn-Banach Theorem.]

